24小时热门版块排行榜    

查看: 1116  |  回复: 9

一碗白开水

金虫 (小有名气)

[求助] 求大神解下这个微分方程,求出y关于x的函数关系,,谢谢了! 已有3人参与

帮忙解下这个微分方程谢谢了!

求大神解下这个微分方程,求出y关于x的函数关系,,谢谢了!
11.gif
回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

生存还是生活有你的态度决定!
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

终之太刀—晓

铁杆木虫 (著名写手)

数学爱好者

【答案】应助回帖

★ ★ ★
感谢参与,应助指数 +1
一碗白开水: 金币+3, 有帮助, 我想要结果,,这不是我想要的,不过还是要谢谢! 2015-04-26 22:36:21
求不出解析表达式,只能是数值解。
PreferenceforMathematics
2楼2015-04-25 19:46:49
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

一碗白开水

金虫 (小有名气)

引用回帖:
2楼: Originally posted by 终之太刀—晓 at 2015-04-25 19:46:49
求不出解析表达式,只能是数值解。

如果,y相对C是一个很小量,那么可以解吗?
生存还是生活有你的态度决定!
3楼2015-04-25 20:06:19
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

angocn

至尊木虫 (文坛精英)

【答案】应助回帖

感谢参与,应助指数 +1
把方程做一个小变动,进行分离变量
其实我喜欢历史,可是却学了理科
4楼2015-04-25 20:25:37
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

一碗白开水

金虫 (小有名气)

引用回帖:
4楼: Originally posted by angocn at 2015-04-25 20:25:37
把方程做一个小变动,进行分离变量

这样做完近似可以解吗?
求大神解下这个微分方程,求出y关于x的函数关系,,谢谢了!-1
图片2.png

生存还是生活有你的态度决定!
5楼2015-04-25 21:00:36
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

一碗白开水

金虫 (小有名气)

引用回帖:
4楼: Originally posted by angocn at 2015-04-25 20:25:37
把方程做一个小变动,进行分离变量

能帮忙解下吗?
生存还是生活有你的态度决定!
6楼2015-04-25 21:01:08
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

终之太刀—晓

铁杆木虫 (著名写手)

数学爱好者

【答案】应助回帖

引用回帖:
5楼: Originally posted by 一碗白开水 at 2015-04-25 21:00:36
这样做完近似可以解吗?

图片2.png
...

这样方程可表为dy/dx=P(y)/Q(y)的形式,其中P,Q都是关于y的多项式。
分离变量并积分之,可以求出x=x(y)的隐式通解表达式。
PreferenceforMathematics
7楼2015-04-26 03:31:33
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

一碗白开水

金虫 (小有名气)

引用回帖:
7楼: Originally posted by 终之太刀—晓 at 2015-04-26 03:31:33
这样方程可表为dy/dx=P(y)/Q(y)的形式,其中P,Q都是关于y的多项式。
分离变量并积分之,可以求出x=x(y)的隐式通解表达式。...

之后能不能化成y关于x的函数
生存还是生活有你的态度决定!
8楼2015-04-26 09:43:19
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

shulixue

新虫 (小有名气)

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
感谢参与,应助指数 +1
一碗白开水: 金币+3, 有帮助 2015-04-26 22:37:12
一碗白开水(feixiaolin代发): 金币+15 2015-05-02 06:36:56
> ode := diff(y(x), x) = -A*y(x)+B*C/(p+q*cos(C+y(x)));
                     d                         1        
                    --- y(x) = -y(x) + -----------------
                     dx                1 + cos(1 + y(x))
> ics := y(0) = 0;
                                  y(0) = 0
> dsolve({ics, ode});


                       /    /  /_Z                              \\
                       |    | |          1 + cos(1 + _a)        ||
          y(x) = RootOf|x - | |    - ----------------------- d_a||
                       |    | |      _a + _a cos(1 + _a) - 1    ||
                       \    \/0                                 //
> evalf(%);
                       /    /  /_Z                              \\
                       |    | |          1 + cos(1 + _a)        ||
          y(x) = RootOf|x - | |    - ----------------------- d_a||
                       |    | |      _a + _a cos(1 + _a) - 1    ||
                       \    \/0                                 //
请查看于maple
9楼2015-04-26 11:53:07
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

一碗白开水

金虫 (小有名气)

引用回帖:
9楼: Originally posted by shulixue at 2015-04-26 11:53:07
> ode := diff(y(x), x) = -A*y(x)+B*C/(p+q*cos(C+y(x)));
                     d                         1        
                    --- y(x) = -y(x) + -----------------
                     dx ...

能不能把化简的结果发给我,这样表示形式看不太懂;
生存还是生活有你的态度决定!
10楼2015-04-26 16:38:26
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 一碗白开水 的主题更新
信息提示
请填处理意见