| 查看: 4228 | 回复: 14 | |||
[交流]
【求助】集列的上下极限的三个问题?请大虾解答
|
|||
|
最近看集列的极限,看的比较头大,请教大虾以下几个问题: (1)集列的上极限公式是怎么得出的?大虾能不能用通俗的语言解释一下,我一直理解不了公式右侧的交和并怎么会是上极限。如下图所示, (2)请大虾看一下这个例题,为什么下极限是(-1,1],而不是(-1,1)? (3)集列的上极限、下极限到底在数学上有什么用途? 请教各位大虾指教! |
» 猜你喜欢
请教限项目规定
已经有5人回复
拟解决的关键科学问题还要不要写
已经有8人回复
最失望的一年
已经有16人回复
存款400万可以在学校里躺平吗
已经有33人回复
求助一下有机合成大神
已经有3人回复
求推荐英文EI期刊
已经有5人回复
26申博
已经有3人回复
基金委咋了?2026年的指南还没有出来?
已经有10人回复
基金申报
已经有6人回复
疑惑?
已经有5人回复
» 本主题相关价值贴推荐,对您同样有帮助:
数学关于极限题。。。。
已经有5人回复
实变函数论 那汤松
已经有91人回复
大家帮忙求极限,给出详细的解题过程
已经有6人回复
求助,一个极限的求法
已经有4人回复
函数列极限问题
已经有9人回复
求助一极限题目!!!
已经有20人回复
关于数学符号的问题?请教大虾
已经有16人回复
问一个高数求极限
已经有18人回复
食品工程原理概念与习题解答(李云飞,葛克山第一版)(搜过,貌似没重复)
已经有54人回复
小弟想投单晶学报E,但有三个G类错误,请各位大虾们不吝赐教。。。
已经有3人回复
请问下BET大虾有关滞后环的问题
已经有5人回复
问个泛函分析的问题, 有关序列极限,略难。。。
已经有13人回复
急急!求解单晶,必有重谢!
已经有13人回复
求助一个数学问题!
已经有17人回复
请教遗传算法三个问题
已经有10人回复
【求助】求助四个题,知道的大虾给解答下,每个问题10金,谢谢
已经有8人回复
【求助】各位大侠,求助三道高一数学题
已经有4人回复
【求助/交流】关于昆虫细胞Sf9的一些问题!大虾请进!
已经有17人回复
【求助】请问大虾:什么叫极限电流?
已经有6人回复
» 抢金币啦!回帖就可以得到:
辽宁材料实验室高热通量框架复合材料方向招聘科研骨干2名(长期有效)
+5/220
扬州大学王赪胤教授课题组 2026级博硕士研究生生招生(电化学储能 / 光催化方向)
+1/76
哈尔滨工业大学王东博课题组/中科院上海微系统所梁丽娟课题组招收2026年博士生1名
+1/70
西交利物浦大学黄彪院士招收26年全奖博士生1名(工业智能方向)
+1/50
坐标广州,诚征男友,大个子女生,非诚勿扰
+2/36
智合健物课题组2026年博士生招生(湖北工业大学)
+1/30
求奥希替尼生产工艺
+1/30
国重点实验室双一流A类长江学者团队招2026年全日制博士1-2名
+2/26
上海理工大学“新能源材料”专业-赵斌教授招收申请考核制博士生【能源催化方向】
+1/24
南京林业大学木质纤维功能材料国际联合创新中心招收2026级博士生(申请-考核制)
+2/20
中国科学院大连化学物理研究所-环境催化工程研究组(DNL 902组)事业编外项目聘用人员
+2/14
多伦多城市大学深度学习方向博士后
+1/7
2025版《中国药典》方法测定二甲基亚砜含量偏高
+1/6
换工作
+1/5
山东师范大学海外优青(校长团队)招聘硕士/博士/博后
+1/3
河北工业大学层状材料与器件团队诚聘二维材料与原位电子显微学方向青年教师与博士后
+1/3
【博士后/科研助理招聘-北京理工大学-集成电路与电子学院-国家杰青团队】
+1/2
【博士后/科研助理招聘-北京理工大学-集成电路与电子学院-国家杰青团队】
+1/1
福州大学梁宇航副教授招收2026年申核制博士研究生/硕士研究生(理论计算方向)
+1/1
武汉-顺磁测试-自由基电子弛豫时间
+1/1
12楼2011-04-16 00:23:54
1楼
rainbowguy(金币+5): 2011-03-19 22:48:43
2楼2011-03-19 21:18:43
3楼2011-03-19 21:30:26
4楼2011-03-19 22:35:28
5楼2011-03-19 22:48:32
6楼2011-03-19 23:15:51
7楼2011-03-19 23:36:14
8楼2011-03-20 00:33:15
9楼2011-03-20 01:01:38
10楼2011-03-20 11:08:56
11楼2011-03-20 19:10:49
13楼2014-11-27 19:38:56
14楼2014-11-28 00:08:54
★
小木虫: 金币+0.5, 给个红包,谢谢回帖
小木虫: 金币+0.5, 给个红包,谢谢回帖
|
(1)可以这样理解:观察{An}的上极限,它是对于An的所有并集序列求其交集,这个并集序列的每一个元素你会发现,它总是会把无穷远的那个An并含在内,也就是说每一个并集序列它至少包含 n为无穷的那个An。再对它求交集后,很明显的结论就是,交集里必然存在n在无穷大时的An,也就是说n趋于无穷时的An是必然属于{An}的上极限的。即:lim An属于上极限lim An。 下极限是同样的,{An}的下极限,是对于An的所有交集序列求并,你会观察到这个交集序列的每个元素,必然是n趋于无穷时An的一个子集。再把所有的子集求并,你会发现{An}的下极限必然被n趋于无穷时的An包含。 下上是直观的理解,这样的话就会明白,上极限{An}包含下极限{An},当下极限{An}等于上极限{An}时,{An}的极限存在,就是n趋于无穷的An。 |
15楼2015-10-16 11:41:02













回复此楼