Ò»¸ö¼¶ÊýÇóºÍµÄÎÊÌ⣿
Éè[latex]p>5[/latex]ÊÇËØÊý£ºÊÔÖ¤£º
[latex]p\mid\left(\sum\limits_{1\leq i<i<k\leq p-1}ijk\right)[/latex]
½ñÈÕÈÈÌû
Éè[latex]p>5[/latex]ÊÇËØÊý£ºÊÔÖ¤£º
[latex]p\mid\left(\sum\limits_{1\leq i<i<k\leq p-1}ijk\right)[/latex]
Éè[latex]p>5[/latex]ÊÇËØÊý£¬ÊÔÖ¤£º
[latex]p\mid\left(\sum\limits_{1\leq i<j\leq p-1}ij\right)[/latex]
Éè[latex]p>5[/latex]ÊÇËØÊý£¬ÊÔÖ¤£º
[latex]p\mid\left(\sum\limits_{1\leq i<j\leq p}ij\right)[/latex]
ÒýÀí1£º Èç¹ûp>2ÊÇËØÊý£¬ (p-1)²»Õû³ýÕýÕûÊýn, ÄÇô Sum_{1<= k <= p-1} k^n =0 (mod p)
Ö¤Ã÷£ºmod p ÓÐÔ¸ù £¨¿ÉÒԲο¼https://zh.wikipedia.org/wiki/%E5%8E%9F%E6%A0%B9)£¬ÉèΪc, ¼´cµÄ½×Ϊ(p-1). ÓÉnµÄÌõ¼þÖª c^n ²»µÈÓÚ 1 (mod p). È»¶ø
Sum_{1<= k <= p-1} k^n = c^n Sum_{1<= k <= p-1} k^n (mod p)
ËùÒÔSum_{1<= k <= p-1} k^n =0 (mod p)
ÒýÀí2: Sum_{1<=i, j, k <=p-1} ijk =3! * Sum_{1<=i <j <k <= p-1} ijk + 3 * Sum_{1<= i £¬k <= p-1} i^2*k
Ö¤Ã÷£ººÃÏñÊÇÏÔÈ»µÄ£¬µ«½²²»Çå³þ£¬ ÂÔ¡£
ÓÉÒýÀí1ºÍÒýÀí2£¬ ¼ÓÉÏ 3£¡=6 (mod p) µ± p>5ʱ¿ÉÄæ£¬ ËùÒÔÃüÌâ³ÉÁ¢
p | Sum_{1<=i <j <k <= p-1} ijk.
ºÃÏñÒýÀí2 ²»¶Ô£¬ ¸Ä³É
Sum_{1<=i, j, k <=p-1} ijk =3! * Sum_{1<=i <j <k <= p-1} ijk + 3 * Sum_{1<= i £¬k <= p-1} i^2*k - 2* Sum_{1<=k <= p-1} k^3
Ï£ÍûÕâ´Î¶ÔµÄ¡£
²»¹ý×ܸоõ¹Ö¹ÖµÄ£¬ ºÃÏñʲô¶¼Ã»Ëµ£¬Ö»ÊǼñÁËÒ»¸ö×îÈíµÄÊÁ×ÓÄóÁËÄó £¨Ö¸ÒýÀí1£©£¬È»ºóһ·ÏÔÈ»¡£¡£¡£
ÎÒ×Ô¼º¿´ÁËÒ»ÏÂÒÔǰµÄ»Ø¸´, ²»ÖªËùÔÆ. Êýѧ²»Ó¦¸ÃÊÇÕâÑùµÄ, ¶øÊǼòµ¥¶øÉî¿ÌµÄ.
ÎÒÃÇ¿ÉÒÔ°ÑEdstrayerµÄÌâÄ¿ÍÆ¹ã, È»ºó¾ÍÖªµÀÌâÄ¿ÕæÕýÏëÎʵÄÊÇʲôÁË.
Éèn>1, [latex]1\leq m \leq \phi(n)[/latex] ÕýÕûÊý. f(x1,x2,...,xm)Ϊm¸ö±äÁ¿µÄÆë´Î¶Ô³Æº¯Êý. (¶Ô³ÆÖ¸f(...,xi,..,xj,...)=f(...,xj,..,xi,..), ¶ÔÈÎÒâ[latex]i\neq j[/latex], Ææ´ÎÖ¸´æÔÚk, ʹµÃ[latex]f(a*x1,...,a*xm)=a^k*f(x1,..,xm)[/latex])
ÒýÀí: Èô[latex]1\leq m \leq \phi(n)[/latex], f(x1,x2,...,xm)Ϊm¸ö±äÁ¿µÄ´ÎÊýΪkµÄÆë´Î¶Ô³Æº¯Êý, ÄÇô¶ÔÓÚÓën»¥ËصÄÈÎÒâÕûÊýa, (¼´ (a,n)=1), ¾ùÓÐ
[latex]n|(a^k-1)\sum{f(x1,..,xm)}[/latex], ÆäÖÐÇóºÍÈ¡±énµÄ¼ÈԼʣÓàϵÖÐmÔªµÄ»¥ÒìÔªËØ×é.
Ö¤Ã÷: ¶¨Òå¶øÒÑ.
ÇóºÍÕë¶ÔËùÓеÄ(x1,...,xm), xi»¥²»Ïàͬ, Óën»¥ËØ. ÄÇô(a*x1,..,a*xm) ͬÑùÂú×ãa*xiÒÀ¾É»¥²»Ïàͬ, Óën»¥ËØ. ¶ÔËùÓеÄ(a*x1,..,a*xm)ÇóºÍ,×ÔÈ»¾Í[latex]\sum{f(a*x_1,...,a*x_m)}\equiv \sum{f(x_1,...,x_m)}(\mod n)[/latex]. ¼ÓÉÏfÊÇÆë´Î¶Ô³ÆµÄ, ÒýÀí³ÉÁ¢.
ÀûÓÃÕâ¸öÒýÀí, µ±n=pËØÊý, [latex]m=\phi(p)=p-1[/latex], [latex]f(x_1,..,x_{p-1})=\prod_{j=1}^{p-1}x_j[/latex], Á¢¿ÌµÃµ½·ÑÂíС¶¨Àí:[latex] a^{p-1}\equiv 1 (\mod p)[/latex]
µ±n=pËØÊý, m=3, f(x1,x2,x3)=x1*x2*x3, Á¢¿ÌµÃµ½ Edstrayer µÄ¶¨Àí. (°üÀ¨Ò»Â¥,¶þÂ¥µÄ, ͬʱ³ÉÁ¢), ²¢ÇÒÖªµÀp=5ʱ¶¨ÀíÒÀÈ»³ÉÁ
£¬
һ¥µÄ½á¹û¶Ôp=5ʱ²»³ÉÁ¢¡£ÊÂʵÉÏ£¬ÎÒÃÇÓУº
[latex]\sum\limits_{1\leqslant i<j<k\leqslant 4}ijk=1\cdot 2\cdot 3+1\cdot 2\cdot 4+2\cdot 3\cdot 4=38[/latex]
¶ø38²»ÊÇ5µÄ±¶Êý¡£