24小时热门版块排行榜    

CyRhmU.jpeg
查看: 6799  |  回复: 24
本帖产生 1 个 数学EPI ,点击这里进行查看

zgchen9

金虫 (小有名气)

[求助] 请问如何求解二元一阶微分方程组

各位朋友新年好,我需要解一个二元一阶微分方程组,但是本人数学水平有限,特请交各位朋友。
A,B,C,D,E,F,K为常数,x 和y为t 的函数。dx/dt和dy/dt为导数,二元一阶微分方程组如下:
dx/dt=Ax+By+C
dy/dt=Dx+Ey+F
边界条件为t=0时,x=y=K.


请问如何得到x 和y. 谢谢。

方程组
回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

一份耕耘,一份收获
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
回帖支持 ( 显示支持度最高的前 50 名 )

peterflyer

木虫之王 (文学泰斗)

peterflyer


【答案】应助回帖

sweety: 应助指数+1 2013-11-10 12:49:18
sweety: 数学EPI+1, 耐心解答 2013-11-10 12:49:37
求解过程:对方程(1)、(2)两边求Laplace变换,记X(s) 、Y(s)分别为x=x(t)和y=y(t)关于t的Laplace变换。由拉氏变换的性质,有:
s*X(s)-k=A*X(s)+B*Y(s)+C/s               (3)
s*Y(s)-k=D*X(s)+E*Y(s)+F/s               (4)
联解方程(3)和(4),有:
X(s)=[k*s+(B*k-E*k+C)+(B*F-C*E)/s]/{[s-(A+E)/2]^2-[(A-E)^2/4
             +B*D]}
      =[k*s+(B*k-E*k+C)]/{[s-(A+E)/2]^2-[(A-E)^2/4+B*D]}
      +(B*F-C*E)/(A*E-B*D)*1/s
      +{[(C*E-B*F)/(A*E-B*D)]*s+(B*F-C*E)*(A+E)/(A*E-B*D)}/
         /{[s-(A+E)/2]^2-[(A-E)^2/4+B*D]}
Y(s)=[k*s+(F+D*k-A*k)+(C*D-A*F)/s]/{[s-(A+E)/2]^2-[(A-E)^2/4
             +B*D]}
      =[k*s+(F+D*k-A*k)]/{[s-(A+E)/2]^2-[(A-E)^2/4+B*D]}
       +[(C*D-A*F)/(A*E-B*D)]*1/s
      +{[A*F-C*D)/(A*E-B*D)]*s+(A+E)*(C*D-A*F)/(A*E-B*D)}/
          /{[s-(A+E)/2]^2-[(A-E)^2/4+B*D]}
对X(s)和Y(s)求拉氏反变换,得到x=x(t)和y=y(t)的表达式。查拉氏反变换表可知:1/s的拉氏反变换为1;s/[s^2+ω^2]的反变换为Cosωt;
1/[s^2+ω^2]的反变换为Sinωt; 1/[(s-δ)^2+ω^2]的反变换为
  exp(at)*Cosωt;  (s-δ)/[(s-δ)^2+ω^2]的反变换为exp(at)*Sinωt;
1/(s-a)的反变换为exp(at),同时并注意到拉氏变换与反变换均具有线性叠加的性质,故可得到如下结果:
(1) 若-B*D-(A-E)^2/4 ≥0, 令ω^2=-B*D-(A-E)^2/4 ,此处ω≥0
则上面的X(s)和Y(s)的表达式均可通过代数中的知识表达为由1/s、(s-γ)/[(s-γ)^2+ω^2]以及1/[(s-γ)^2+ω^2]等的线性表达式。因此, x(t)与y(t)均为1、exp(γ*t)*Cosωt、exp(γ*t)*Sinωt等的线性表达式,只不过各自的系数不同而已。由于表达式过于复杂,这里就不具体写出了。
(2)若-B*D-(A-E)^2/4 ≤0,令-ω^2=-B*D-(A-E)^2/4 ,此处ω≥0
此时,X(s)和Y(s)均可表达为1/s、1/(s-γ)、1/(s+γ)等的线性表达式,因此, x(t)与y(t)均为1、exp(γ*t)、exp(-γ*t)等的线性表达式,只不过各自的系数不同而已。由于表达式过于复杂,这里就不具体写出了。
14楼2013-11-10 11:38:50
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

peterflyer

木虫之王 (文学泰斗)

peterflyer


【答案】应助回帖

楼主能给个信箱,我把手算的计算过程用手机拍成图片给你发过去。
13楼2013-11-07 19:29:05
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
普通回帖

一山

铁杆木虫 (正式写手)

【答案】应助回帖

★ ★
感谢参与,应助指数 +1
soliton923(金币+2): 谢谢参与讨论~~~ 2012-01-02 22:31:57
zgchen9(金币+5): ★★★很有帮助 2012-01-02 22:34:49
zgchen9(金币+5): ★★★很有帮助 2012-01-02 22:35:21
zgchen9(金币+5): ★★★很有帮助 2012-01-05 20:58:34
用mathematica软件可以求解:
DSolve[{x'[t] == A x[t] + B y[t] + C, y'[t] == D x[t] + E y[t] + F,
   x[0] == K, y[0] == K}, {x, y}, t] // Simplify

答案是:

x -> Function[{t}, (2 E^(-(1/
         2) (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) (-2 B C D E^(
          1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
         2 B C D E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
         2 B C D E^(
          Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) -
         A C E^(1 + Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
         C E^(2 + Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
         A C E^(1 + 1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) -
          C E^(2 + 1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) -
         2 B C D E^(
          1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
         A C E^(1 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) -
         C E^(2 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) -
         A C E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
         C E^(2 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
         C E^(1 + Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
          A^2 + 4 B D - 2 A E + E^2] +
         C E^(1 + 1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t)
           Sqrt[A^2 + 4 B D - 2 A E + E^2] -
         C E^(1 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
          A^2 + 4 B D - 2 A E + E^2] -
         C E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
          A^2 + 4 B D - 2 A E + E^2] +
         A B E^(1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F -
         A B E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F -
         A B E^(Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F -
         B E^(1 + Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F +
         B E^(1 + 1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F +
         
         A B E^(1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F +
         B E^(1 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F -
         B E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F -
         B E^(1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
          A^2 + 4 B D - 2 A E + E^2] F +
         B E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
          A^2 + 4 B D - 2 A E + E^2] F -
         B E^(Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
          A^2 + 4 B D - 2 A E + E^2] F +
         B E^(1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
          A^2 + 4 B D - 2 A E + E^2] F +
         A B D E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K +
         2 B^2 D E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
         A B D E^(
          1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
         2 B^2 D E^(
          1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K +
         A^2 E^(1 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K +
         2 A B E^(
          1 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K +
         B D E^(1 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
         A E^(2 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
         A^2 E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
         2 A B E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
          B D E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K +
         A E^(2 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K +
         B D E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
          A^2 + 4 B D - 2 A E + E^2] K +
         B D E^(1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
          A^2 + 4 B D - 2 A E + E^2] K -
         A E^(1 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
          A^2 + 4 B D - 2 A E + E^2] K -
         A E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
          A^2 + 4 B D - 2 A E + E^2] K))/(Sqrt[
       A^2 + 4 B D - 2 A E +
        E^2] (-A - E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) (A + E + Sqrt[
         A^2 + 4 B D - 2 A E + E^2]))],
  y -> Function[{t}, -(2 E^(-(1/
          2) (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) (-A C D E^(
           1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
          A C D E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
          A C D E^(
           Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
            1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
          C D E^(1 + Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
            1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) -
         
          C D E^(1 +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) -
          A C D E^(
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) -
          C D E^(1 +
            1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
          C D E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) +
          C D E^(1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t)
            Sqrt[A^2 + 4 B D - 2 A E + E^2] -
          C D E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
           A^2 + 4 B D - 2 A E + E^2] +
          C D E^(Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
            1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
           A^2 + 4 B D - 2 A E + E^2] -
          C D E^(1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
           A^2 + 4 B D - 2 A E + E^2] +
          A^2 E^(1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F +
          2 B D E^(1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t)
            F -
          A^2 E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F -
          2 B D E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F -
          A^2 E^(Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
            1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F -
          2 B D E^(
           Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
            1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F +
          A E^(1 + Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
            1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F -
          A E^(1 + 1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t)
            F + A^2 E^(
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F +
          2 B D E^(
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F -
          A E^(1 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F +
          A E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) F -
          A E^(1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
           A^2 + 4 B D - 2 A E + E^2] F +
          A E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
           A^2 + 4 B D - 2 A E + E^2] F -
          A E^(Sqrt[A^2 + 4 B D - 2 A E + E^2] t +
            1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
           A^2 + 4 B D - 2 A E + E^2] F +
          A E^(1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
           A^2 + 4 B D - 2 A E + E^2] F +
          A B D E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
          2 B D^2 E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
          A B D E^(
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K +
          2 B D^2 E^(
           1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K +
          A^2 E^(1 +
            1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
          2 A D E^(
           1 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K +
          B D E^(1 +
            1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
          A E^(2 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
          A^2 E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K +
          2 A D E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t)
            K - B D E^(
           1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K +
          A E^(2 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) K -
          B D E^((A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
           A^2 + 4 B D - 2 A E + E^2] K -
          B D E^(1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
           A^2 + 4 B D - 2 A E + E^2] K +
          A E^(1 + 1/2 (A + E - Sqrt[A^2 + 4 B D - 2 A E + E^2]) t +
            1/2 (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
           A^2 + 4 B D - 2 A E + E^2] K +
         
          A E^(1 + (A + E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) t) Sqrt[
           A^2 + 4 B D - 2 A E + E^2] K))/(Sqrt[
        A^2 + 4 B D - 2 A E +
         E^2] (-A - E + Sqrt[A^2 + 4 B D - 2 A E + E^2]) (A + E +
          Sqrt[A^2 + 4 B D - 2 A E + E^2]))]}}
忽悠王之俗家弟子
2楼2012-01-02 22:28:24
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

soliton923

铁杆木虫 (职业作家)

数学村村长

看图吧,希望对你有用


soliton;sato-theory;algebre-geometry;Random-Matrices-Theory; Riemann-Hilbert method
3楼2012-01-02 22:29:45
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

lilac_c

至尊木虫 (知名作家)

【答案】应助回帖

感谢参与,应助指数 +1
zgchen9(金币+2): 有帮助 2012-01-03 19:56:55
我们一般不直接求出解析解,太难了.

 都采用数值格式求解

离散,.......龙格库塔
我生活在一个经常爆发地震的年代
4楼2012-01-03 09:49:02
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
5楼2012-01-03 15:34:35
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

lilac_c

至尊木虫 (知名作家)

【答案】应助回帖


soliton923(金币+1): 谢谢参与讨论~~~ 2012-01-04 22:20:52
dx/dt=Ax+By+C
dy/dt=Dx+Ey+F

基于 crank-Nicloson格式的求解程序编写思路

第一步
显示求解出 当前的x(n+1)与y(n+1)
以第一个方程为例:
x(n+1)=x(n)+dt*( A*x(n)+B*y(n)+C)

第二部校正开始
由于用显格式求解误差会越来越大,故此,要用
x(n+1)=x(n)+dt*( A/2*(x(n)+x(n+1))+B*(y(n)+y(n+1))/2. +c)
当两次求解误差在设置的误差范围内,结束迭代过程,否则,重新回到校正.

.................
我生活在一个经常爆发地震的年代
6楼2012-01-03 21:12:14
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

xxxfield

银虫 (小有名气)

【答案】应助回帖


感谢参与,应助指数 +1
soliton923(金币+1): 谢谢参与讨论~~~ 2012-01-04 22:21:03
对第一式关于t再求一次导数,然后将y, y'用第一、二式代入,得到一个关于x的(一元)二阶常系数线性方程,这个方程的解有公式可用,解出x后马上就可求出y了。
7楼2012-01-04 17:10:23
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

peterflyer

木虫之王 (文学泰斗)

peterflyer


【答案】应助回帖

设X(t)和Y(t)的Laplace变换分别记为F1(s)和F2(s)。分别对两个方程的两边取Laplace变换,得:
  s*F1(s)=A*F1(s)+B*F2(s)+C/s
   s*F2(s)=D*F1(s)+E*F2(s)+F/s
联解以上二元一次方程求出F1(s)和F2(s)
F1(s)=(B*F-C*E)/{s*[(B-E)*s+a*e-b*d]}
       =[(B*F-C*E]/[A*E-B*D]/s+[(B*F-C*E]/[A*E-B*D]/{s-[B*D-A*E]/(B-E)}
F2(s)=[(F-C)*s+C*D-A*F]/{s^2*[(B-E)*s+a*e-b*d]}
       =(C*D-A*F)(A*E-B*D)/s^2+(F-C)/(B-E+A*E-B*D)/s+(F-C)/(B-E+A*E-
        B*D)/[s-(A*E-B*D)/(B-E)]
对F1(s)和F2(s)分别求反变换,并注意到变换与反变换具有线性叠加性质,且反变换公式:1/s的反变换为1;1/ (s-a)的反变换为exp(at),1/s^2的反变换为t/Γ(2),由此便可求的X(t)和Y(t)。

完毕。
8楼2013-11-07 16:53:37
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

peterflyer

木虫之王 (文学泰斗)

peterflyer


【答案】应助回帖

引用回帖:
2楼: Originally posted by 一山 at 2012-01-02 22:28:24
用mathematica软件可以求解:
DSolve // Simplify

答案是:

x -> Function,
  y -> Function}}...

那要这么麻烦?很简单的问题让楼上太忙了。呵呵。
9楼2013-11-07 16:54:41
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

peterflyer

木虫之王 (文学泰斗)

peterflyer


【答案】应助回帖

对了,Γ(2)等于1. Γ(n)=(n-1)!
10楼2013-11-07 17:05:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 zgchen9 的主题更新
信息提示
请填处理意见