| 查看: 3557 | 回复: 125 | |||||
hylpy专家顾问 (知名作家)
|
[交流]
试求数列极限,散金
|
||||
|
证明:数列 要求答题采用LATEX文本。非LATEX文本,无效。 [ Last edited by hylpy on 2015-11-19 at 08:30 ] |
» 猜你喜欢
博士读完未来一定会好吗
已经有21人回复
导师想让我从独立一作变成了共一第一
已经有5人回复
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有11人回复
读博
已经有4人回复
JMPT 期刊投稿流程
已经有4人回复
心脉受损
已经有5人回复
Springer期刊投稿求助
已经有4人回复
小论文投稿
已经有3人回复
Bioresource Technology期刊,第一次返修的时候被退回好几次了
已经有9人回复
申请2026年博士
已经有6人回复
» 抢金币啦!回帖就可以得到:
哈工深国家级青年人才王龙龙教授团队—诚招新能源电池方向博士和硕士研究生
+1/182
想要有个家
+1/80
双一流大学-湘潭大学“电化学能源储存与转换”湖南省重点实验室招生电池方向博士生
+1/70
岭南大学(香港)诚招固态电池方向优秀博士生
+1/42
中国科学院理化所微纳材料与技术前沿交叉研究中心诚聘英才加盟
+1/36
校长团队招博士生和博士后
+1/30
上海大学超分子中心扩展卟啉研究团队2026级博士招生(申请考核制)
+2/22
陕西师范大学应用表面与胶体化学教育部重点实验室刘静教授课题组招收硕/博士生
+2/16
哈尔滨工业大学招收博士研究生(欢迎环境、生物、市政、农业、化学等专业)长期有效
+1/16
长春理工大学和西安工业大学主动光电探测成像技术重点实验室招收博士生
+1/12
博士/硕士招生
+1/10
2026英国女王大学机械学院电池储能CSC全奖博士招聘
+1/9
招聘2026年入学博士生
+1/7
哈尔滨工业大学(深圳)赵怡潞课题组诚招博士后
+1/6
东江实验室招聘~本科及以上可报~急聘!
+1/5
招收26年秋季入学博士生(北科大高精尖学院 力学超材料/机器学习/增材制造相关方向)
+1/4
荷兰奈梅亨大学招收2026 CSC博士: 非线性控制与神经调控
+1/4
浙江师范大学夏永姚/黄健航教授团队招收2026级博士
+1/1
华中农业大学生命科学技术学院 “酶智能设计与农药生物合成”课题组招聘启事
+1/1
哈尔滨工业大学航天学院复合材料与结构研究所招硕士生
+1/1
hylpy
专家顾问 (知名作家)
-

专家经验: +2500 - 数学EPI: 7
- 应助: 381 (硕士)
- 贵宾: 0.167
- 金币: 51113.4
- 帖子: 5093
- 在线: 1102.4小时
- 虫号: 3247778
11楼2015-11-15 19:02:44
★ ★ ★ ★ ★ ★ ★ ★
小木虫: 金币+0.5, 给个红包,谢谢回帖
hylpy: 金币+2, 如果重新编一下,就更好了 2015-11-15 19:15:57
Edstrayer: 金币+5, Latex源文件编译通过,但不符合小木虫论坛的格式,鼓励一下 2015-11-16 17:25:39
小木虫: 金币+0.5, 给个红包,谢谢回帖
hylpy: 金币+2, 如果重新编一下,就更好了 2015-11-15 19:15:57
Edstrayer: 金币+5, Latex源文件编译通过,但不符合小木虫论坛的格式,鼓励一下 2015-11-16 17:25:39
|
我在LATEX里面编辑的,所以只有代码 要睡觉了,所以格式也没改,见谅 其实思路就是用单调有界数列必有极限这个准则 GOOD NIGHT \documentclass{article} \usepackage{amsmath} \usepackage{amssymb} \begin{document} \par{$$\because 0<a_{1}<7,0<a_{2}<7$$} \par{$$\because a_{n+2}=\sqrt{7-\sqrt{7+a_{n}}}$$} \par{$$\therefore 0<a_{2n+1}<7,0<a_{2n+1}<7$$} \par{$$\therefore 0<a_{n}<7$$} \par{$$\therefore \{a_{n}\} is\quad bounded.$$} \par{quad} \par{$$\because a_{n+2}=\sqrt{7-\sqrt{7+a_{n}}}$$} \par{$$\therefore a_{4n+i}-a_{4(n-1)+i}=\sqrt{7-\sqrt{7+a_{4n+i-2}}}-\sqrt{7-\sqrt{7+a_{4(n-1)+i-2}}}=\frac{\sqrt{7+a_{4(n-1)+i-2}}-\sqrt{7+a_{4n+i-2}}}{a_{4n+i}+a_{4(n-1)+i}},i=0,1,2,3$$} \par{$$\therefore a_{4n+i}-a_{4(n-1)+i}=k(a_{4(n-1)+i}-a_{4(n-2)+i}),k>0;i=0,1,2,3$$} \par{$$\therefore \{a_{4n+i}\} is\quad monotone\quad decreasing.(i=0,1,2,3)$$} \par{$$\therefore \{a_{4n+i}\} is\quad Convergent\quad sequence.(i=0,1,2,3)$$} \par{\quad} \par{$$Suppose\quad \lim_{n\rightarrow\infty} a_{4n+i}=A$$} \par{$$\because a_{n+2}=\sqrt{7-\sqrt{7+a_{n}}}$$} \par{$$\therefore A=\sqrt{7-\sqrt{7+\sqrt{7-\sqrt{7+A}}}}$$} \par{$$\therefore A=-3,2,\frac{1\pm\sqrt{29}}{2} ......$$} \par{$$\because 0\leq a_{n}\leq\sqrt{7}$$} \par{$$\therefore 0\leq A\leq\sqrt{7}$$} \par{$$\therefore A=2$$} \par{.....} \end{document} |
2楼2015-11-14 23:42:01
★
小木虫: 金币+0.5, 给个红包,谢谢回帖
小木虫: 金币+0.5, 给个红包,谢谢回帖
|
这个证明是错的,中间单调性的分子有理化多了个负号 正确的思路应该是:按下标除以4的余数将原数列分成四个数列,然后可以用上面的方法证明这四个数列的极限都是2,就能得出这个数列的极限是2 PS:我在上面的代码中做了修改,但是16次方程太麻烦了,留待有心人 [ 发自手机版 http://muchong.com/3g ] |
3楼2015-11-15 00:41:42
5楼2015-11-15 02:03:52
6楼2015-11-15 04:18:56
7楼2015-11-15 09:16:15
8楼2015-11-15 09:54:56
9楼2015-11-15 12:22:37
10楼2015-11-15 16:54:42
hylpy
专家顾问 (知名作家)
-

专家经验: +2500 - 数学EPI: 7
- 应助: 381 (硕士)
- 贵宾: 0.167
- 金币: 51113.4
- 帖子: 5093
- 在线: 1102.4小时
- 虫号: 3247778
12楼2015-11-15 19:07:49
hylpy
专家顾问 (知名作家)
-

专家经验: +2500 - 数学EPI: 7
- 应助: 381 (硕士)
- 贵宾: 0.167
- 金币: 51113.4
- 帖子: 5093
- 在线: 1102.4小时
- 虫号: 3247778
13楼2015-11-15 19:11:20
14楼2015-11-15 21:25:56
15楼2015-11-15 23:03:49
hylpy
专家顾问 (知名作家)
-

专家经验: +2500 - 数学EPI: 7
- 应助: 381 (硕士)
- 贵宾: 0.167
- 金币: 51113.4
- 帖子: 5093
- 在线: 1102.4小时
- 虫号: 3247778
17楼2015-11-19 08:30:01
34楼2015-11-19 08:55:38
41楼2015-11-19 09:14:02
简单回复
stl4094楼
2015-11-15 00:47
回复
dmbb16楼
2015-11-19 08:28
回复
hylpy(金币+1): 谢谢参与
mhycpxir18楼
2015-11-19 08:33
回复
hylpy(金币+1): 谢谢参与

irshvj19楼
2015-11-19 08:33
回复
hylpy(金币+1): 谢谢参与

kolimm20楼
2015-11-19 08:33
回复
hylpy(金币+1): 谢谢参与
,
am435921楼
2015-11-19 08:33
回复
hylpy(金币+1): 谢谢参与
祝福
wblxcs22楼
2015-11-19 08:34
回复
hylpy(金币+1): 谢谢参与

wnotffisg23楼
2015-11-19 08:34
回复
hylpy(金币+1): 谢谢参与

ahsjlyu24楼
2015-11-19 08:34
回复
hylpy(金币+1): 谢谢参与
祝福
keoxri25楼
2015-11-19 08:34
回复
hylpy(金币+1): 谢谢参与

vrxcyvkss26楼
2015-11-19 08:35
回复
hylpy(金币+1): 谢谢参与
ooxmfc27楼
2015-11-19 08:35
回复
hylpy(金币+1): 谢谢参与
。
ucmxjl28楼
2015-11-19 08:35
回复
hylpy(金币+1): 谢谢参与
bincmq29楼
2015-11-19 08:36
回复
hylpy(金币+1): 谢谢参与
fqmkia30楼
2015-11-19 08:36
回复
hylpy(金币+1): 谢谢参与
...
wxubpn31楼
2015-11-19 08:36
回复
hylpy(金币+1): 谢谢参与
祝福
iygbojqj32楼
2015-11-19 08:36
回复
hylpy(金币+1): 谢谢参与
,
aboluo19833133楼
2015-11-19 08:50
回复
hylpy(金币+1): 谢谢参与
落花剑雨35楼
2015-11-19 08:58
回复
hylpy(金币+1): 谢谢参与
dengxin636636楼
2015-11-19 08:59
回复
hylpy(金币+1): 谢谢参与
zly_love_ll37楼
2015-11-19 09:01
回复
hylpy(金币+1): 谢谢参与
nieliangl38楼
2015-11-19 09:04
回复
hylpy(金币+1): 谢谢参与

若干年以后丶39楼
2015-11-19 09:05
回复
hylpy(金币+1): 谢谢参与
xinbanshu40楼
2015-11-19 09:13
回复
hylpy(金币+1): 谢谢参与
祝福 发自小木虫IOS客户端
xiejiaf42楼
2015-11-19 09:15
回复
hylpy(金币+1): 谢谢参与
祝福
luotangh43楼
2015-11-19 09:15
回复
hylpy(金币+1): 谢谢参与
祝福
shumany44楼
2015-11-19 09:16
回复
hylpy(金币+1): 谢谢参与
祝福
junqiaod45楼
2015-11-19 09:16
回复
hylpy(金币+1): 谢谢参与
liguangw46楼
2015-11-19 09:21
回复
hylpy(金币+1): 谢谢参与

支持
zhenglinm47楼
2015-11-19 09:21
回复
hylpy(金币+1): 谢谢参与
祝福
qqllqq48楼
2015-11-19 09:21
回复
hylpy(金币+1): 谢谢参与
qiyingy49楼
2015-11-19 09:21
回复
hylpy(金币+1): 谢谢参与
祝福
peilishab50楼
2015-11-19 09:22
回复
hylpy(金币+1): 谢谢参与
祝福













回复此楼