ÇóÖú´úл¶¯Á¦Ñ§ÏµÊýÄ£Äâ´úÂë 1stOpt»òÕßMATLAB
Çó´úл¶¯Á¦Ñ§ÏµÊýÄ£Äâ
Ò»¼¶´úлÎïµÄ¶¯Á¦Ñ§·½³Ì£ºdC2/dt=k1*C1-k2*C2
³õʼÌõ¼þ£ºt=0£¬C2=0
ÇÒC1=exp£¨-A*t£©¡£A=0.2779
ÎÒ³¢ÊÔÁËÓÃ1stOpt(ÆÆ½â°æ)ºÍMATLAB ODE·½·¨£¬¶¼Ã»³É¹¦£¬ÏëÇë½ÌһϴóÉñ¡£
ÁíÍât²»ÊÇÑϸñµÄµÈ²îÊýÁУ¬È¡ÖµÈ磺t=0£¬1£¬2£¬4£¬6£¬10£¬15£¬24
1stOpt´úÂ룺
Title Kinetic_ave
Parameters k1[0,100], k2[0,100];
Variable t, C;
StartProgram
var i:integer;
begin
for i:=0 to DataLength -1 do begin
if i ==0
C=0;
else
C:=C[i-1]+k1*(t-t[i-1])*exp(-0.2779*t) - k2*C*(t-t[i-1]);
end;
EndProgram;
Data;
//t C
0 xxx
1 xxx
2 xxx
4 xxx
6 xxx
10 xxx
15 xxx
24 xxx
Matlab´úÂ룺
function ODE_ave
clear all;clc
format long
aveall;
t=T_h(;
yexp=OLEave(;
k0=[1 1];
y0=0;
lb=[0 0];
ub=[+inf +inf];
yy=[y0 yexp'];
tspan=0:1:24;
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
lsqnonlin(@ObjFunc,k0,lb,ub,[],tspan,y0,yexp);
fprintf('\n\nʹÓú¯Êýlsqnonlin()¹À¼ÆµÃµ½µÄ²ÎÊýֵΪ:\n')
fprintf('\t´ýÄâºÏ²ÎÊý k1 = %.6f\n',k(1))
fprintf('\t´ýÄâºÏ²ÎÊý k2 = %.6f\n',k(2))
fprintf(' \t²Ð²îƽ·½ºÍ= %.6f\n\n',resnorm)
ts=0:1:24;
[ts ys]=ode45(@KineticsEqs,ts,y0,[],k);
[ttt XXsim] = ode45(@KineticsEqs,tspan,y0,[],k);
y=XXsim(2:end);
xexp=yexp;
R2=1-sum((xexp-y).^2)./sum((xexp-mean(y)).^2);
fprintf('\n\t¾ö¶¨ÏµÊýR-Square = %.6f',R2);
figure(1)
plot(ts,ys,'b',tspan,yy,'or'),legend('¼ÆËãÖµ','ʵÑéÖµ','Location','best');
yr=y-yexp;
figure(2)
plot(tspan(2:end),yr,'r*',[-1 15],[0 0]),axis([-1 15 -0.5 0.5]);
figure(3)
plot(yexp,y,'ro',[21 29],[21 29],'b-');
(×÷ͼÕâ¿é¶ùÊÇcopyµÄ£¬Ã»ÓÐ×öÐÞ¸Ä)
%---------------------------------------------------------
function f = ObjFunc(k,tspan,y0,yexp)
[t Xsim] = ode45(@KineticsEqs,tspan,y0,[],k) ;
ysim = Xsim(2:end);
size(ysim);
size(yexp);
f=ysim(1,1)+ysim(2,1)+ysim(4,1)+ysim(6,1)+ysim(10,1)+ysim(15,1)+ysim(24,1) - sum(yexp(:,1));
%----------------------------------------------------------
function dydt = KineticsEqs(t,y,k)
beta(1)=k(1);
beta(2)=k(2);
dydt = beta(1)*exp(-0.2779*t)-beta(2)*y;
ÇóÇóÀ²£¬±»Õâ¸öÎÊÌ⿨ÁËÁ½¸ö¶àÔÂÁË£¬²»ÖªµÀÔõô½â³ök1 k2
·µ»ØÐ¡Ä¾³æ²é¿´¸ü¶à
¾©¹«Íø°²±¸ 11010802022153ºÅ
²ÎÊýÄâºÏC2ȱÉÙÊý¾Ý
1stOptÈÝÒ×ʵÏÖ£¬1.5²»Ö§³Ö΢·Ö·½³ÌÄâºÏ£¬ÐèÒªÏÂÔØ5.0°æ±¾µÄ
лл»Ø¸´¡£
ÓÐC2µÄÊý¾Ý£¬ÒòΪC1·þ´ÓÖ¸Êý·½³Ì£¬Ö±½Ó°Ñ·½³ÌдÔÚ³ÌÐòÀïÁË¡£C2µÄÊý¾Ý¾ÍдÔÚÁËÏÂÃæµÄÊý¾Ý±íÀï¡£
ÄÜ·ÖÏí5.0°æµÄ1stOptÏÂÔØÃ´£¿ÎÒÔÚÍøÉÏʵÔÚÕÒ²»µ½ÁË£¬ÎÒÕâÀïҲûÓÐУÄÚbbsÖ®ÀàµÄ¶«Î÷¡£¡£
ллÁË
C2Êý¾Ý¸ø³öÀ´¿´¿´
²»ÊÇÊý¾ÝµÄÎÊÌ⣬ÊdzÌÐò²»ÄÜÔËÐеÄÎÊÌâ¡£µãÔËÐÐÖ®ºó¾ÍתȦ£¬Êä³öÄÇÀïҲû·´Ó¦¡£
½«C µÄÊý¾Ý²¹ÉϾͿÉÒÔÔËÐÐÁË¡£
Parameters k1[0,100], k2[0,100];
Variable t, C;
InitialODEValue t=0,c=0;
ODEFunction c'=k1*exp(-0.2779*t)-k2*c;
Data;
//t C
0 xxx
1 xxx
2 xxx
4 xxx
6 xxx
10 xxx
15 xxx
24 xxx
ºÃÏñ²»¶ÔÍ·¡£
´ó¸ç¼Ó¸öqq°¡£¬ÎÒºÃÇë½ÌÄã°
£¬