µ±Ç°Î»Ö㺠Ê×Ò³ > ÂÛÎÄͶ¸å >¸÷λ´óÉñ£¬Çë°ïСµÜ²éÒ»ÏÂÂÛÎÄÊDz»ÊÇSCI¼ìË÷¡£

¸÷λ´óÉñ£¬Çë°ïСµÜ²éÒ»ÏÂÂÛÎÄÊDz»ÊÇSCI¼ìË÷¡£

×÷Õß xxh8787
À´Ô´: Сľ³æ 200 4 ¾Ù±¨Ìû×Ó
+¹Ø×¢

¸÷λ´óÉñ£º
       Çë°ïÖúСµÜ²éÒ»ÏÂÂÛÎÄÊÇ·ñÒѾ­±»SCI¼ìË÷£¬Èç¹û¼ìË÷Ç뷢һϼìË÷½çÃæß£¬Ð»Ð»£¡
Xinghua xia, Signature alignment based on GMM for on-line signature verification, PATTERN RECOGNITION, vol.65, 188-196. DOI:10.1016/j.patcog.2016.12.019, 2017.5 ·µ»ØÐ¡Ä¾³æ²é¿´¸ü¶à

½ñÈÕÈÈÌû
  • ¾«»ªÆÀÂÛ
  • material155

    ÓÉÓÚÕâÆªÂÛÎijö°æÊ±¼äΪ2017ÄêÎåÔ£¬Òò´ËÒ»¶¨»¹Ã»±»¼ìË÷¡£

  • transÎÒ

    65¾íδ¼ìË÷

  • liouzhan654

    ¼ìË÷Çé¿öÈçÏ£º


    Signature alignment based on GMM for on-line signature verification
    ×÷Õß:Xinghua Xia; Zhili Chen; Fangjun Luan; Xiaoyu Song
    Pattern Recognition
    ¾í: 65   Ò³: 188-96  
    DOI: 10.1016/j.patcog.2016.12.019  
    ³ö°æÄê: May 2017  

    ÕªÒª
    On-line handwritten signatures are collected as real-time dynamical signals, which are written on collective devices by users. Since writing environments are always changed, fluctuations can be caused by signature size, location and rotation angle which being various at each inputting. Signatures should be effectively aligned before verification, which can diminish deviations caused by these fluctuations. In this study, we propose a method of signature alignment based on Gaussian Mixture Model to obtain the best matching. In verification, a modified dynamic time warping with signature curve constraint is presented to improve the efficiency. Weight factors are dynamically assigned to features, which depend on coefficient of variation, to improve the robustness. Several experiments are implemente.d on the open access on-line signature databases MCYT and SVC2004 Task2. The best performances can be provided with equal error rates 2.15% and 2.63%, respectively. Experimental results indicate the effectiveness and robustness of our proposed method. [All rights reserved Elsevier].
    ×÷ÕßÐÅÏ¢
    ×÷ÕßµØÖ·: Xinghua Xia; Zhili Chen; Fangjun Luan; Xiaoyu Song; Sch. of Inf. & Control Eng., Shenyang JianZhu Univ., Shenyang, China.
    ³ö°æÉÌ
    Elsevier B.V., Netherlands
    Àà±ð / ·ÖÀà
    Ñо¿·½Ïò:Communication; Mathematics; Computer Science (ÓÉ Thomson Reuters Ìṩ)
    ¹ú¼ÊרÀû·ÖÀà:G06T Image data processing or generation, in general
    ·ÖÀà´úÂë:B6135E Image recognition; B0240Z Other topics in statistics; C5260B Computer vision and image processing techniques; C1140Z Other topics in statistics
    CODENTNRA8
    ÊÜ¿ØË÷Òý:Gaussian processes; handwriting recognition; mixture models
    ·ÇÊÜ¿ØË÷Òý:signature alignment; GMM; online handwritten signature verification; real-time dynamical signals; Gaussian mixture model; modified dynamic time warping; signature curve constraint; MCYT open access online signature database; SVC2004 Task2 open access online signature database
    ÎÄÏ×ÐÅÏ¢
    ÎÄÏ×ÀàÐÍ:Journal Paper
    ÓïÖÖ:English
    Èë²ØºÅ:INSPEC:16642024
    ISSN:0031-3203
    ²Î¿¼ÎÄÏ×Êý:53
    ÆÚ¿¯ÐÅÏ¢
    Impact Factor (Ó°ÏìÒò×Ó): Journal Citation Reports®
    ÆäËûÐÅÏ¢
    ´¦ÀíÀàÐÍ:Bibliography, Practical, Theoretical or Mathematical
    ÎÄÏ׺Å:S0031-3203(16)30436-8£¬

  • material155

    ĿǰPATTERN RECOGNITION×îЙzË÷ÙYÓ?Ö»µ½Volume: 64, APR 2017.
    ¸÷λ´óÉñ£¬Çë°ïСµÜ²éÒ»ÏÂÂÛÎÄÊDz»ÊÇSCI¼ìË÷¡£
    111.png

²ÂÄãϲ»¶
ÏÂÔØÐ¡Ä¾³æAPP
Óë700Íò¿ÆÑдïÈËËæÊ±½»Á÷
  • ¶þάÂë
  • IOS
  • °²×¿