帮忙看看这个文章是否被SCI检索,谢谢了
文章信息如下
RONG HU,Characterizations for vectorial prequasi-invex type functions via Jensen type inequalities,Journal of Mathematical Inequalities, Volume 10, Number 1 (2016), 101–121
返回小木虫查看更多
今日热帖
文章信息如下
RONG HU,Characterizations for vectorial prequasi-invex type functions via Jensen type inequalities,Journal of Mathematical Inequalities, Volume 10, Number 1 (2016), 101–121
返回小木虫查看更多
!!!!
这个期刊在梅斯网页能查到,被Science Citation Index Expanded 收录,杂志由 ELEMENT 出版或管理。 ISSN号:1846-579X:影响因子:0.636,年文章:103,出版周期:Quarterly,
web of science可检索,检索号:WOS:000378243500009
https://apps.webofknowledge.com/ ... age=1&doc=1
CHARACTERIZATIONS FOR VECTORIAL PREQUASI-INVEX TYPE FUNCTIONS VIA JENSEN TYPE INEQUALITIES
作者:Hu, R (Hu, Rong)[ 1 ]
JOURNAL OF MATHEMATICAL INEQUALITIES
卷: 10 期: 1 页: 101-121
DOI: 10.7153/jmi-10-09
出版年: MAR 2016
查看期刊信息
摘要
The purpose of this paper is to derive some criteria for vectorial prequasi-invex type functions via Jensen type inequalities. It is shown that a Jensen type inequality is sufficient and necessary for a vector function to be prequasi-invex under the condition of lower level-closedness, cone lower semicontinuity, cone upper semicontinuity and semistrict prequasi-invexity, respectively. Analogous results are established for vectorial semistrictly prequasi-invex functions and vectorial strictly prequasi-invex functions.
关键词
作者关键词:Jensen type inequalities; prequasi-invexity; semistrict prequasi-invexity; strict prequasi-invexity; lower level-closedness; cone lower semicontinuity; cone upper semicontinuity
KeyWords PlusREINVEX FUNCTIONS; SEMICONTINUITY
作者信息
通讯作者地址: Hu, R (通讯作者)
显示增强组织信息的名称 Chengdu Univ Informat Technol, Dept Appl Math, Chengdu 610225, Sichuan, Peoples R China.
地址:
显示增强组织信息的名称 [ 1 ] Chengdu Univ Informat Technol, Dept Appl Math, Chengdu 610225, Sichuan, Peoples R China
电子邮件地址:ronghumath@aliyum.com
基金资助致谢
基金资助机构 授权号
National Science Foundation of China
11201042
Scientific Research Foundation of CUIT
J201216
KYTZ201128
查看基金资助信息
出版商
ELEMENT, R AUSTRIJE 11, 10000 ZAGREB, CROATIA
类别 / 分类
研究方向:Mathematics
Web of Science 类别:Mathematics, Applied; Mathematics
文献信息
文献类型:Article
语种:English
入藏号: WOS:000378243500009
ISSN: 1846-579X
期刊信息
Impact Factor (影响因子): Journal Citation Reports®
其他信息
IDS 号: DP1IK
Web of Science 核心合集中的 "引用的参考文献": 14
Web of Science 核心合集中的 "被引频次": 0,