WHAT+A=SHOW (竖式形式) 问W=? 选项为1, 4, 6, 2,…… [ Last edited by Pd7577 on 2011-10-13 at 12:32 ] 返回小木虫查看更多
这题如果是普通的0~9的数字的话是不可能的, 如果W和S不同则千位加一,而百位H相同,怎么可能使千位进一而百位相同
要使各位和十位成立,需要A=9,O=0!前面不合理!
这就是某央企的测评题 各字母代表不同的数字 我昨天做的时候记下的 应该没错啊
那要是WHAT-A=SHOW 呢 问W=? 也就这儿可能出错了 求大家想先办法吧
WHAT×A=SHOW w=4 由题意得出 一个四位数 乘以 一个1位数 =一个四位数 并且乘数与被乘数的十位数字相同 被乘数的千位数字与积得个位数字相同 被乘数的百位数字与积得百位数字相同得出 当W=1 的时候 A×T的个位数字必须是1 1—9数字中 符合条件的有9*9=81 3*7=21 1*1=21 因为每个字母代表一个数字所以排除了 9×9=81 1×1=1 所以当A=3 T=7 的时候 则有1()37×3 括号里的数字×3+1 这个结果的个位数字必须为 括号里的数 经计算没有符合条件的 反过来当A=7 T=3的时候 1()73×7 符合条件的只有1×7+4=11 但是括号里的数字不能是1 否则就会与W数字一样 所以排除 以此类推当W=2的时候 符合条件的有3×4=12 2×6=12 1×2=2 用每个不同的字母代表不同的数字排除了2×6=12 1×2=2 则有 当A=3 T=4 的时候 2()34×3 符合条件的没有 当A=4 T=3的时候 2()43×4 括号里 符合条件的有数字3 但是不符合H不等于T 所以排除 当W=3的时候符合条件的只有7×9=63 但是如果这样得出的结果就是一个5位数字 所以排除 当W=4的时候 符合条件的只有2×7=14 所以 当A=7的时候 得出的结果一定是5位数 所以 只有A=2 T=7 4()27×2 符合条件的只有0 所以 最后结果就是 W=4 H=0 A=2 T=7 S=8 O=5 当W=5的时候 没有符合条件的 当W=6、7 8 9 的时候都没有符合条件的 所以答案只有一个 就是W=4,
这题如果是普通的0~9的数字的话是不可能的,
如果W和S不同则千位加一,而百位H相同,怎么可能使千位进一而百位相同
要使各位和十位成立,需要A=9,O=0!前面不合理!
这就是某央企的测评题 各字母代表不同的数字 我昨天做的时候记下的 应该没错啊
2L说的对,肯定是你记错了
那要是WHAT-A=SHOW 呢 问W=? 也就这儿可能出错了 求大家想先办法吧
LZ啊,这个还是和2L说的一样啊。百位数没变化,千位数怎么可能变了呢?
WHAT×A=SHOW
w=4
由题意得出 一个四位数 乘以 一个1位数 =一个四位数 并且乘数与被乘数的十位数字相同
被乘数的千位数字与积得个位数字相同 被乘数的百位数字与积得百位数字相同得出
当W=1 的时候 A×T的个位数字必须是1 1—9数字中 符合条件的有9*9=81 3*7=21 1*1=21 因为每个字母代表一个数字所以排除了 9×9=81 1×1=1
所以当A=3 T=7 的时候 则有1()37×3 括号里的数字×3+1 这个结果的个位数字必须为 括号里的数 经计算没有符合条件的
反过来当A=7 T=3的时候 1()73×7 符合条件的只有1×7+4=11 但是括号里的数字不能是1 否则就会与W数字一样 所以排除
以此类推当W=2的时候 符合条件的有3×4=12 2×6=12 1×2=2 用每个不同的字母代表不同的数字排除了2×6=12 1×2=2
则有 当A=3 T=4 的时候 2()34×3 符合条件的没有
当A=4 T=3的时候 2()43×4 括号里 符合条件的有数字3 但是不符合H不等于T 所以排除
当W=3的时候符合条件的只有7×9=63 但是如果这样得出的结果就是一个5位数字 所以排除
当W=4的时候 符合条件的只有2×7=14 所以
当A=7的时候 得出的结果一定是5位数 所以 只有A=2 T=7
4()27×2 符合条件的只有0 所以
最后结果就是
W=4 H=0 A=2 T=7 S=8 O=5
当W=5的时候 没有符合条件的
当W=6、7 8 9 的时候都没有符合条件的 所以答案只有一个
就是W=4,