¡¾·ÖÏí¡¿1000¶à±¾ÎïÀíÊ飬ÖÐÓ¢ÎÄ£¬PDF¡¢DJVU¸ñʽ£¬ÐèҪע²á²ÅÄÜÏÂÔØ
È«²¿Í¼Êé¾ùÒÑÉÏ´«ÔÚÎÒ×Ô¼ºËù×öµÄÂÛ̳ÖУ¬´Ó2008Äê07ÔÂ06ÈÕÆð£¬ÖÁ½ñÒÑÊÕ¼¯ÎïÀíÀàµç×ÓͼÊé1000¶à±¾£¬È«²¿ÊÇPDF¼°DJVU¸ñʽ£¬²¿·ÖͼÊé±¾ÂÛ̳ÒÑÓУ¬²¿·ÖûÓУ¬ÏÖ½«ÒÑÓеÄͼÊéĿ¼¼°Á´½ÓÕ³ÌùÔÚÏÂÃæ¡£·ÖÖÐÓ¢Îİ´ÊéÃûÅÅÐò£¬ÓÐС²¿·Ö·ÇÎïÀíÀ൫ÓëÎïÀíÓÐµã¹ØÏµµÄͼÊé¡£
×¢£º±¾ÂÛ̳µÄÕâЩͼÊé¾ùÐèҪע²á²ÅÄÜÏÂÔØ¡£ÏÂÔØÐèÒª»¨·ÑÂÛ̳ÐéÄâ»õ±Ò£¬µ«Ö»ÒªÄãÔ¸ÒâÉÏ´«Ò»ÆªÂÛÎÄÖ®ÀàµÄ×ÊÁÏ£¬»ù±¾ÉÏ¿ÉÒÔÏÂÔØÈ«ÂÛ̳ËùÓеÄ×ÊÁÏ£¬Ïê¼û£ºhttp://phys.5d6d.com/thread-3113-1-1.html
²»Ô¸·ÖÏíµÄÅóÓÑ×¢²áÒ»¸öÕʺŻù±¾ÉÏÖ»¿ÉÒÔÏÂÔØÒ»±¾×ÊÁÏ¡£
=================================
ת×Ô£ºhttp://phys.5d6d.com/thread-343-2-1.html
=================================
C001¡¢1981È«¹úÖØµã¸ßµÈԺУ˶ʿѧλÑо¿ÉúÈëѧÊÔÌâ¼°Ñ¡½â ÎïÀíѧ
C002¡¢1982-1983ÄêÈ«¹úÖØµã¸ßµÈԺУ˶ʿѧλÑо¿ÉúÈëѧÊÔÌâÑ¡¼¯ ÎïÀíѧ
C003¡¢2000¹¤³ÌÈÈÁ¦Ñ§Ï°Ì⾫½â¡¾ÀîÀ×Öø,»ÆÏþÇÙ,¹é¿ÂÍ¥,ÕÅÓñƼ,´÷ÑÇ·ÉÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿14
C004¡¢2000ÀëÉ¢ÊýѧϰÌ⾫½â¡¾ÀûÆÕÊæ´Ä,ÀûÆÕÉÖø,ÁÖ³ÉÉÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿20
C005¡¢2007ÄêÖйú¹â·ü·¢Õ¹±¨¸æ¡¾Àî¿¡·å,Íõ˹³É¡¿
C006¡¢200µÀÎïÀíѧÄÑÌâ-¸½ÌáʾÓë½â´ð¡¾ÄɵÂ,¹þÄù¿Ë,ÈðÀûÖø,ÀîÝ¿,ÐìÓÀÀû,ÈÎÊÀºê,Îâ½ðÉÁ,ÁõÎıëÒë¡¿
C007¡¢3000»¯Ñ§Ï°Ì⾫½â¡¾¸êµÂ±¤Öø,Ï͍¹úÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿25
C008¡¢3000ÎïÀíϰÌ⾫½â¡¾¹þ¶ûÅíÖø,½âϣ˳,ÕÅÓÂ,ÖìÑÞ÷,ÕÂÄþÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿16
C009¡¢E=mc2£ºÏà¶ÔÂÛÈëÃÅ¡¾ÍÐÂí˹.±È¶û¿ËÖø,³Â»ÛÒë¡¿¡¾Ç°ÑØ¿ÆÑ§Ì½Ë÷Êéϵ¡¿
C010¡¢Fortran³£ÓÃËã·¨³ÌÐò¼¯(µÚ¶þ°æ)¡¾ÐìÊ¿Á¼¡¿
C011¡¢MathematicaʹÓÃÖ¸ÄÏ¡¾ÓȽðÖø,µË½¨ËÉ,ÅíȽȽÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿04
C012¡¢QED£º¹âºÍÎïÖÊµÄÆæÒìÐÔ¡¾·ÑÂüÖø,ÕÅÖÓ¾²Òë¡¿
C013¡¢Visual Fortran±à³ÌÖ¸ÄÏ¡¾µËΡΡ,ÍõÔ½ÄС¿
C014¡¢Visual Fortran³£ÓÃÊýÖµËã·¨¼¯¡¾ºÎ¹âÓå,¸ßÓÀÀû¡¿
C015¡¢XÉäÏß¼¤¹â¡¾Åí»ÝÃñ,ÍõÊÀ¼¨¡¿
C016¡¢XÉäÏß½ðÊôѧ¡¾·¶ÐÛ¡¿
C017¡¢ï¹Ïµï¹ÏµºóÔªËØ¡¾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ10¾í
C018¡¢°®Òò˹̹µÄ´ó´íÂ𣿡¾¸ç¶û˹ÃÜÖø,ÐìÎÄÐãµÈÒë¡¿
C019¡¢°®Òò˹̹ȫ¼¯(µÚ1¾í)ÔçÄêʱÆÚ(1879-1902)
C020¡¢°®Òò˹̹ȫ¼¯(µÚ2¾í)ÈðʿʱÆÚ(1900-1909)
C021¡¢°®Òò˹̹ȫ¼¯(µÚ3¾í)ÈðʿʱÆÚ(1909-1911)
C022¡¢°®Òò˹̹ȫ¼¯(µÚ4¾í)ÈðʿʱÆÚ(1912-1914)
C023¡¢°®Òò˹̹ȫ¼¯(µÚ5¾í)ÈðʿʱÆÚ(1902-1914)
C024¡¢°®Òò˹̸̹ÈËÉú¡¾¶Å¿¨Ë¹,»ô·òÂü¡¿ÓëÏÂÒ»±¾Ïàͬ£¬¸Õ·¢ÏÖ
C025¡¢°®Òò˹̸̹ÈËÉú¡¾¶Å¿¨Ë¹,»ô·òÂüÖø,¸ßÖ¾¿Òë¡¿
C026¡¢°®Òò˹̹ÍíÄêÎļ¯
C027¡¢°®Òò˹̹Îļ¯(µÚ1¾í)¡¾ÐíÁ¼Ó¢,·¶á·Äê±àÒë¡¿
C028¡¢°®Òò˹̹Îļ¯(µÚ2¾í)¡¾·¶á·Äê,ÕÔÖÐÁ¢,ÐíÁ¼Ó¢±àÒë¡¿
C029¡¢°®Òò˹̹Îļ¯(µÚ3¾í)¡¾ÐíÁ¼Ó¢,ÕÔÖÐÁ¢,ÕÅÐûÈý±àÒë¡¿
C030¡¢°å¿ÇÀíÂÛ¡¾S.ÌúĦÐÁ¿Â,S.ÎÖŵ˹»ù¡¿
C031¡¢°ëµ¼Ì峬¾§¸ñ²ÄÁϼ°ÆäÓ¦Ó᾿µ²ýº×,ÑîÊ÷ÈË¡¿
C032¡¢°ëµ¼Ìå¹âµç×Óѧ¡¾»ÆµÂÐÞ¡¿
C033¡¢°ëµ¼Ìå¹âѧÐÔÖÊ¡¾Éòѧ´¡¡¿
C034¡¢°ëµ¼ÌåÆ÷¼þÎïÀí¡¾Ê©ÃôÖø,»ÆÕñ¸ÚÒë¡¿
C035¡¢°ëµ¼ÌåÎïÀí(µÚ6°æ)¡¾Áõ¶÷¿Æ,Öì±üÉú,ÂÞ½úÉú¡¿
C036¡¢°ëµ¼ÌåÎïÀí»ù´¡¡¾»ÆÀ¥,º«Èêçù¡¿
C037¡¢°ëµ¼ÌåÎïÀíѧ(ÉÏ)¡¾Ò¶Á¼ÐÞ¡¿
C038¡¢°ëµ¼ÌåÎïÀíѧ(ÏÂ)¡¾Ò¶Á¼ÐÞ¡¿
C039¡¢°ëµ¼ÌåÎïÀíѧ¡¾ÀîÃû¸´¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C040¡¢±ä·Ö·¨¼°ÓÐÏÞÔª(Éϲá)¡¾Ç®Î°³¤¡¿
C041¡¢±íÃæÓë½çÃæÎïÀí¡¾ã¢ÕýÖС¿
C042¡¢±ðÄÖÁË£¬·ÑÂüÏÈÉú-¿ÆÑ§ÍçͯµÄ¹ÊÊ¡¾·ÑÂüÖø,Îâ³ÌÔ¶Òë¡¿
C043¡¢²¨¶¯(ÉÏ)¡¾²®¿ËÀûÎïÀíѧ½Ì³Ì¡¿¾í3
C044¡¢²¨¶¯(ÏÂ)¡¾²®¿ËÀûÎïÀíѧ½Ì³Ì¡¿¾í3
C045¡¢²¨¶¯Á¦Ñ§¡¾ÅÝÀûÎïÀíѧ½²Òå¡¿5
C046¡¢²¨¶¯Óë¹âѧ(µÚ¶þ°æ)¡¾ÕÅÈý»Û¡¿¡¾´óѧÎïÀíѧ¡¿µÚ4²á
C047¡¢²¨Æ×·ÖÎö»ù´¡¡¾Ö£Ò±Õæ¡¿
C048¡¢²£¶ûÑо¿ËùµÄÔçÄêËêÔÂ(1921-1930)¡¾ÂÞ²®ÉÖø,Ñ¼ÒµÈÒë¡¿
C049¡¢²ÄÁϵÄÌØÕ÷¼ì²â(µÚII²¿·Ö)¡¾E.Àû¸¥ÉÖ÷±à,Ò¶ºãÇ¿µÈÒë¡¿¡¾²ÄÁÏ¿ÆÑ§Óë¼¼Êõ´ÔÊé¡¿(µÚ2B¾í)
C050¡¢²ÄÁϵÄÌØÕ÷¼ì²â(µÚI²¿·Ö)¡¾E.Àû¸¥ÉÖ÷±à,Ò¶ºãÇ¿µÈÒë¡¿¡¾²ÄÁÏ¿ÆÑ§Óë¼¼Êõ´ÔÊé¡¿(µÚ2A¾í)
C051¡¢²ÄÁϵÄ͸Éäµç×ÓÏÔ΢Êõ¡¾G.ÍÐÂí˹,M.J.¸ßÁÖ¼ª¡¿
C052¡¢²ÄÁÏÁ¦Ñ§(µÚËİæ)¡¾ÄÉÊ²Öø,ÕÔÖ¾¸ÚÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿19
C053¡¢²ÄÁÏÁ¦Ñ§¡¾ÌúĦÐÁ¿Â,¸Ç¶û¡¿
C054¡¢³£ÓÃÊýѧ¹«Ê½´óÈ«¡¾Íõè÷À¤¡¿
C055¡¢³¡Á¿×Ó»¯Ñ¡Ì⡾ÅÝÀûÎïÀíѧ½²Òå¡¿6
C056¡¢³¡ÂÛ¡¾ÀʵÀÀíÂÛÎïÀí½Ì³Ì¡¿¾í02
C057¡¢³¡ÂÛÓëÁ£×ÓÎïÀíѧ(ÉÏ)¡¾ÀîÕþµÀ¡¿
C058¡¢³¡ÂÛÓëÁ£×ÓÎïÀíѧ(ÏÂ)¡¾ÀîÕþµÀ¡¿
C059¡¢³¡Ó벨¡¾Alonso,FinnºÏÖø,Áº±¦ºéÒë¡¿¡¾´óѧÎïÀíѧ»ù´¡¡¿µÚ2¾í
C060¡¢³¬µ¼ÎïÀí¡¾ÕÅÔ£ºã¡¿
C061¡¢³¬µ¼ÎïÀí¡¾ÕÂÁ¢Ô´¡¿
C062¡¢³¬¶Ô³ÆÎïÀíµ¼ÂÛ¡¾ÀîÐÂÖÞ,Ð콨¾ü¡¿
C063¡¢³¬Éù¼¼Êõ¼°ÆäÓ¦Óá¾²¼Àû´ÄÖø,Àî¶«ÁÖÒë¡¿
C064¡¢³¬ÉùÊֲ᡾·ëÈô¡¿
C065¡¢³¬Éùѧ¡¾Ó¦³ç¸£¡¿
C066¡¢´«ÈÈѧ(ÔµÚ¶þ°æ)¡¾Æ¤´Ä,Î÷Ë÷Ä·Öø,¸ðÐÂʯµÈÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿12
C067¡¢´«ÈÈÓëÁ÷ÌåÁ÷¶¯µÄÊýÖµ¼ÆË㡾ÅÁ̹¿¨¡¿
C068¡¢´Ó·´Á£×Óµ½×îÖÕ¶¨ÂÉ¡¾·ÑÂü,β®¸ñÖø,ÀîÅàÁ®Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ3¼]
C069¡¢´ÓÅ£¶Ù¶¨Âɵ½°®Òò˹̹Ïà¶ÔÂÛ¡¾·½ÀøÖ®,ñÒҫȪ¡¿
C070¡¢´ÓÅ×ÎïÏß̸Æð¡ª»ìã綯Á¦Ñ§ÒýÂÛ¡¾ºÂ°ØÁÖ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C071¡¢´óѧ»¯Ñ§Ï°Ì⾫½â¡¾ÂÞɱ¤,°®ÆÃË¹Ì¹Öø,Ëï¼ÒÔ¾,¶Åº£ÑàÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿26
C072¡¢´óѧÎïÀíµäÐÍÌâ·ÖÎö½â¼¯¡¾Íõ±ò,ÕųС¿
C073¡¢´óѧÎïÀíÁ¦Ñ§½ÌѧÑо¿¡¾²Ì²®å¥¡¿
C074¡¢´óѧÎïÀíѧϰÌâÌÖÂÛ¿ÎÖ¸µ¼(Éϲá)¡¾Éò»Û¾ý,Íõ»¢Öé¡¿
C075¡¢´óѧÎïÀíѧϰÌâÌÖÂÛ¿ÎÖ¸µ¼(ϲá)¡¾Éò»Û¾ý,Íõ»¢Öé¡¿
C076¡¢´óѧÎïÀíѧϰָµ¼¡¾´Þ¾õ÷,³É³Ç,ÍõÏþÓ±¡¿
C077¡¢µ¯ÐÔºÍËÜÐÔÁ¦Ñ§Öеıä·Ö·¨¡¾ðÕ½ò¾ÃÒ»ÀÉÖø,ÀÏÁÁ,ºÂËÉÁÖÒë¡¿
C078¡¢µ¯ÐÔÀíÂÛ¡¾ÌúĦÐÁ¿Â¡¿
C079¡¢µ¯ÐÔÁ¦Ñ§¡¾Ð»êÝȨ,ÁÖÖÓÏê,¶¡ð©½¡¿
C080¡¢µ¯ÐÔÎȶ¨ÀíÂÛ¡¾ÌúĦÐÁ¿Â,¸ÇÀ³¡¿
C081¡¢µªÁ×Éé·Ö×塾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ04¾í
C082¡¢µ¼²¨¹âѧÎïÀí»ù´¡¡¾ÙÜÊØÏÜ¡¿
C083¡¢µÍÄܼ°ÖиßÄÜÔ×ÓºËÎïÀíѧ¡¾³ÌÌ´Éú,ÖÓØ¹äø¡¿
C084¡¢µØÇò»¯Ñ§¡¾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ18¾í
C085¡¢µäÐÍȺ¼°ÆäÔÚÎïÀíѧÉϵÄÓ¦Óá¾»³°îÖø,·ë³ÐÌìµÈÒë¡¿
C086¡¢µç´Å²¨Ê±ÓòÓÐÏÞ²î·Ö·½·¨¡¾¸ðµÂ±ë,ãÆÓñ²¨¡¿
C087¡¢µç´Å³¡¼ÆËãÖеÄʱÓòÓÐÏÞ²î·Ö·¨¡¾Íõ³¤Çå,×£Î÷Àï¡¿
C088¡¢µç´Å³¡ÀíÂÛ¼°Ó¦Óá¾ÂíÎ÷¿ü¡¿
C089¡¢µç´Åѧ¡¾ÃÀ¹úÎïÀíÊÔÌâÓë½â´ð¡¿µÚ2¾í
C090¡¢µç´Åѧ(Éϲá)¡¾ÕÔ¿»ª,³ÂÎõı¡¿
C091¡¢µç´Åѧ(ϲá)¡¾ÕÔ¿»ª,³ÂÎõı¡¿
C092¡¢µç´Åѧ¡¾çêÈû¶ûÖø¡¿¡¾²®¿ËÀûÎïÀíѧ½Ì³Ì¡¿¾í2
C093¡¢µç´Åѧ¡¾Îâ´óéà¡¿¡¾Îâ´óéàÀíÂÛÎïÀí¡¿µÚ3²á
C094¡¢µç´Åѧ¡¾ÕÅÈý»Û,ê°¸ýæÂ,»ª»ùÃÀ¡¿¡¾´óѧÎïÀíѧ¡¿µÚ3²á
C095¡¢µç´Åѧ¡¾ÕÔ¿»ª,³ÂÎõı¡¿¡¾Ð¸ÅÄîÎïÀí½Ì³Ì¡¿
C096¡¢µç¶¯Á¦Ñ§¡¾ÅÝÀûÎïÀíѧ½²Òå¡¿1
C097¡¢µç¶¯Á¦Ñ§(µÚ¶þ°æ)¡¾²ÌÊ¥ÉÆ,ÖìÔÅ,Ð콨¾ü¡¿¡¾ÃæÏò21ÊÀ¼Í¿Î³Ì½Ì²Ä¡¿
C098¡¢µç¶¯Á¦Ñ§¡¾¹ù˶ºè¡¿
C099¡¢µç¶¯Á¦Ñ§¼òÃ÷½Ì³Ì¡¾ÓáÔÊÇ¿¡¿¡¾±±¾©´óѧÎïÀíѧ´ÔÊé¡¿
C100¡¢µç¶¯Á¦Ñ§½²Ò塾ºúÄþ¡¿²»È«
[net]http://phys.5d6d.com/thread-343-2-1.html[/net]
[ Last edited by argo on 2008-12-7 at 12:31 ]
·µ»ØÐ¡Ä¾³æ²é¿´¸ü¶à
¾©¹«Íø°²±¸ 11010802022153ºÅ
C101¡¢µç¶¯Á¦Ñ§½âÌâÖ¸µ¼¡¾ÍõÑ©¾ý¡¿
C102¡¢µç¶¯Á¦Ñ§Ï°Ì⼯¡¾°ÍµÙ½ð,ÍÐÆÕµÙ½ð±àÖø,ÍôÕò·ª,Ö£ÎýçöÒë¡¿
C103¡¢µç»úÓë»úµçѧ¡¾ÄÉÈø¶ûÖø,ôë»ÛÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿33
C104¡¢µç½éÖÊÎïÀíѧ¡¾ÒóÖ®ÎÄ,·½¿¡öΡ¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C105¡¢µçÁ¦±äѹÆ÷Êֲ᡾лع³Ç¡¿
C106¡¢µç·¡¾°£µÂÃ÷Ë¹ÌØ,ÄÎÎ¬Öø,º«¹âʤ,ÐíâùÉúÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿27
C107¡¢µçÆø¹¤³Ì»ù´¡¡¾¿¨Î÷,ÄÉÈø¶ûÖø,ãÛ¼ÌÌ©Òë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿28
C108¡¢µç×ÓÑÜÉäͼ©¤©¤ÔÚ¾§ÌåѧÖеÄÓ¦Óá¾¹ù¿ÉÐÅ,Ò¶ºãÇ¿,ÎâÓñçû¡¿¡¾²ÄÁÏ¿ÆÑ§¼°²âÊÔ¼¼Êõ´ÔÊé¡¿
C109¡¢µü´ú·½³ÌÓëǶÈëÁ÷¡¾Õž°ÖÐ,Ñî·,ÕÅΰÄê¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C110¡¢¶¨ÐÔÓë°ë¶¨Á¿ÎïÀíѧ¡¾ÕÔ¿»ª¡¿
C111¡¢¶àÁ£×ÓϵͳµÄÁ¿×ÓÀíÂÛ¡¾·ÑÌØ,ÍßÁ¢¿ËÖø,³Â¿¡ÎÄÒë¡¿
C112¡¢¶þÔª¹âѧ¡¾½ð¹ú·ª,ÑÏçø°×,ÚùÃôÏ͵ȡ¿
C113¡¢·¢ÏÖµÄÀÖȤ¡¾·ÑÂüÖø,ÕÅÓô·òÒë¡¿¡¾×ß½ø·ÑÂü´ÔÊé¡¿
C114¡¢·ºº¯·ÖÎö³õ²½¡¾I.J.MaddoxÖø,ÖìÏþÁÁ,ÕÅÎÄÉîÒë¡¿
C115¡¢·ÅÉ仯ѧ¡¾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ16¾í
C116¡¢·Ç¾§Ì¬°ëµ¼ÌåÎïÀíѧ¡¾ºÎÓîÁÁ,³Â¹â»ª,ÕÅ·ÂÇå¡¿
C117¡¢·Çƽºâ̬ÈÈÁ¦Ñ§ºÍºÄÉ¢½á¹¹¡¾ÀîÈçÉú¡¿
C118¡¢·Çƽºâ̬ͳ¼ÆÀíÂÛ¡¾»ôԣƽ,Ö£¾ÃÈÊ¡¿¡¾ÏÖ´úÎïÀíѧ´ÔÊé¡¿
C119¡¢·Çƽºâ̬ͳ¼ÆÁ¦Ñ§¡¾ÆÕÀï¸ê½ðÖø,½ȫ¿µÒë¡¿
C120¡¢·ÇÏßÐÔ´úÊý·½³Ì×éÓ붨Àí»úÆ÷Ö¤Ã÷¡¾Ñî·,Õž°ÖÐ,ºîÏþÈÙ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C121¡¢·ÇÏßÐÔµ¯ÐÔÀíÂÛ¡¾¹ùÖٺ⡿
C122¡¢·ÇÏßÐÔ¶¯Á¦Ñ§¡¾Áõ±üÕý,Åí½¨»ª¡¿
C123¡¢·ÇÏßÐÔ¹âѧ¡¾·ÑºÆÉú¡¿
C124¡¢·ÇÏßÐÔ¹âѧÔÀí(ÉÏ)¡¾ÉòÔªÈÀÖø,¹ËÊÀ½ÜÒë¡¿
C125¡¢·ÇÏßÐÔ¹âѧÔÀí(ÏÂ)¡¾ÉòÔªÈÀÖø,¹ËÊÀ½ÜÒë¡¿
C126¡¢·ÇÏßÐÔ¹âѧ¡ª¡ªÔÀíÓë½øÕ¹¡¾Ç®Ê¿ÐÛ,Íõ¹§Ã÷¡¿
C127¡¢·ÇÏßÐÔÑÝ»¯·½³Ì¡¾¹ù°ØÁé¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C128¡¢·Ñ¶÷ÂüÑݽ²Â¼¡ª¡ªÒ»Î»Åµ±´¶ûÎïÀíѧ½±»ñµÃÕß¿´Éç»á¡¾·Ñ¶÷ÂüÖø,ÕÅÔöÒ»Òë¡¿
C129¡¢·ÑÂü½²ÎïÀíÈëÃÅ¡¾·ÑÂüÖø,ÇØ¿Ë³ÏÒë¡¿¡¾×ß½ü·ÑÂü´ÔÊé¡¿
C130¡¢·ÑÂüÎïÀíѧ½²Òå(µÚ1¾í)
C131¡¢·ÑÂüÎïÀíѧ½²Òå(µÚ2¾í)
C132¡¢·ÑÂüÎïÀíѧ½²Òå(µÚ3¾í)
C133¡¢·ÑÂüÎïÀíѧ½²ÒåϰÌ⼯
C134¡¢·Ö²íÓëÆæÒìÐÔ¡¾Â½ÆôÉØ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C135¡¢·ÖÐνéÖÊ·´Ó¦¶¯Á¦Ñ§¡¾ÐÁºñÎÄ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C136¡¢·ÖÐÎÎïÀíѧ¡¾ÑîÕ¹Èç¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C137¡¢·Ö×Ó¹ìµÀ´ÓÍ·¼ÆËã·¨¡¾W.G.Àí²éµÂ,D.L.¹Å²®Öø,ÍõÒø¹ðÒë¡¿
C138¡¢·Ö×ÓºÍϸ°ûÉúÎïѧ¡¾Ë¹Ì¹·Æ¶ûµÂ,¿ÆÂåÂó,¿¨ÅµÖø,½ªÕзå,ÇñÈØ,ÎâÜçÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿39
C139¡¢·Ö×ÓÄ£Äâ-´ÓËã·¨µ½Ó¦Óá¾Frenkel&SmitÖø,ÍôÎÄ´¨µÈÒë¡¿
C140¡¢·ûºÅ¶¯Á¦ÏµÍ³¡¾ÖÜ×÷Áì¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C141¡¢·øÉäµÄÁ¿×Óͳ¼ÆÐÔÖÊ¡¾Â·Ò×Èû¶û¡¿
C142¡¢¸´ÔÓÐÔÓ붯Á¦ÏµÍ³¡¾Ð»»ÝÃñ,ºÂ°ØÁÖ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C143¡¢¸ÅÂÊÓëͳ¼Æ(µÚ¶þ°æ)¡¾Ë¹Æ¤¸ñ¶û,Ï£ÀÕ,˹ÀïÄáÍßÉ£Öø,ËïɽÔó,´÷ÖÐάÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿01
C144¡¢¸ßµÈ·ÖÎöÁ¦Ñ§¡¾Ã··ïÏè¡¿
C145¡¢¸ßµÈÁ¿×ÓÁ¦Ñ§(µÚ¶þ°æ)¡¾¿¦ÐËÁÖ¡¿¡¾Ñо¿Éú½ÌѧÓÃÊé¡¿
C146¡¢¸ßµÈÁ¿×ÓÁ¦Ñ§(µÚ¶þ°æ)¡¾ÑîÔóÉ¡¿
C147¡¢¸ßµÈÁ¿×ÓÁ¦Ñ§¡¾ÁõÏ£Ã÷¡¿
C148¡¢¸ßµÈÁ¿×ÓÁ¦Ñ§¡¾Ä߹⾼,³ÂËÕÇä¡¿¡¾ÉϺ£Ñо¿Éú½ÌÓý´ÔÊé¡¿
C149¡¢¸ßµÈͳ¼ÆÁ¦Ñ§µ¼ÂÛ¡¾ÁºÏ£ÏÀ¡¿¡¾ÄÚÃɹŴóѧ½Ì²Ä´ÔÊé¡¿
C150¡¢¸ß·Ö×ÓÎïÀí(ÐÞ¶©°æ)¡¾ºÎÂü¾ý,³ÂάТ,¶Î÷ÏÀ¡¿
C151¡¢¸ß㬵¼Î¢²¨µç·¡¾ÉòÖÂÔ¶¡¿
C152¡¢¸ßηøÉäÎïÀíÓëÁ¿×Ó·øÉäÀíÂÛ¡¾ÀîÊÀ²ý¡¿
C153¡¢¹¤³Ìµç´Å³¡»ù´¡¡¾°£µÂÃ×ÄáË¹ÌØ¶ûÖø,À×ÒøÕÕ,Îâ¾²µÈÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿29
C154¡¢¹¤³ÌÁ¦Ñ§¡ª¡ª¾²Á¦Ñ§Ó붯Á¦Ñ§(ÔµÚÎå°æ)¡¾ÄɶûÑ·,±´Ë¹ÌØ,Âó¿ËÀ³¶÷Öø,¼ÖÆô·Ò,ºÂÊçÓ¢Òë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿15
C155¡¢¹¤³ÌĦ²Áѧ»ù´¡¡¾ÅÓÓÓϼ,»ÆÎ°¾Å,̷Ԯǿ,Áõºñ²Å¡¿
C156¡¢¹¤³ÌÈÈÁ¦Ñ§¡¾²¨Ìضû,ÈøÄ¬¶ÙÖø,¹ùº½,ËïËÃÓ¨,Õźì¹â,µ×±ùÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿21
C157¡¢¹¤³ÌÖеÄÕñ¶¯ÎÊÌ⡾ÌúĦÐÁ¿ÂµÈÖø,ºúÈËÀñÒë¡¿
C158¡¢¹²½¹ÏÔ΢ÊõµÄÈýά³ÉÏñÔÀí¡¾¹ËÖø,Íõ¹ðÓ¢,³ÂÕì,ÑîÀòËÉÒë¡¿
C159¡¢¹Â²¨ºÍÍÄÁ÷¡¾Áõʽ´ï,ÁõʽÊÊ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C160¡¢¹Â×ÓÀíÂÛ(ÄæÎÊÌâ·½·¨)¡¾Ôú¹þÂÞ·ò,ÂíÄɿƷò,ŵά¿Æ·ò,Ƥ´ïÒ²·ò˹»ùÖø,ÅíÆô²ÅÒë,ºî²®ÔªÐ£¡¿
C161¡¢¹Â×ÓÀíÂÛºÍ΢ÈÅ·½·¨¡¾»ÆÄîÄþ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C162¡¢¹Åµä¶¯Á¦Ñ§¡¾Îâ´óéà¡¿¡¾Îâ´óéàÀíÂÛÎïÀí¡¿µÚ1²á
C163¡¢¹ÅµäÁ¦Ñ§¡¾¸ê¶û´Ä̹¡¿
C164¡¢¹Å½ñÊýѧ˼Ïë(µÚ1²á)¡¾ÄªÀï˹•¿ËÀ³ÒòÖø,ÕÅÀí¾©,µË¶«¸ÞÒë¡¿
C165¡¢¹Å½ñÊýѧ˼Ïë(µÚ2²á)¡¾ÄªÀï˹•¿ËÀ³ÒòÖø,ÕÅÀí¾©,µË¶«¸ÞÒë¡¿
C166¡¢¹Å½ñÊýѧ˼Ïë(µÚ3²á)¡¾ÄªÀï˹•¿ËÀ³ÒòÖø,ÕÅÀí¾©,µË¶«¸ÞÒë¡¿
C167¡¢¹Å½ñÊýѧ˼Ïë(µÚ4²á)¡¾ÄªÀï˹•¿ËÀ³ÒòÖø,ÕÅÀí¾©,µË¶«¸ÞÒë¡¿
C168¡¢¹ÌÌåµÄµç×ӽṹ¡¾¿Æ¶û˹,¿¨ÆÕÁÖÖø,ÕÅÔö˳Òë¡¿
C169¡¢¹ÌÌ廯ѧµ¼ÂÛ¡¾ËÕÃãÔø¡¿
C170¡¢¹ÌÌå½á¹¹¡¾R.W.¿¨¶÷¡¿¡¾²ÄÁÏ¿ÆÑ§Óë¼¼Êõ´ÔÊé¡¿(µÚ1¾í)
C171¡¢¹ÌÌåÀíÂÛ(µÚ¶þ°æ)¡¾ÀîÕýÖС¿
C172¡¢¹ÌÌåÀíÂÛ¡¾ÀîÕýÖС¿
C173¡¢¹ÌÌåÁ¿×ÓÀíÂÛ(Éϲá)¡¾¿¨ÀÍþÖø£¬ÍõÒÔÃúÒë¡¿
C174¡¢¹ÌÌåÁ¿×ÓÀíÂÛ(ϲá)¡¾¿¨ÀÍþÖø£¬Ñî˳»ªÒë¡¿
C175¡¢¹ÌÌåÄÚºÄÀíÂÛ»ù´¡£º¾§½ç³ÛÔ¥Óë¾§½ç½á¹¹¡¾¸ðÍ¥ìÝ¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C176¡¢¹ÌÌåÄÜ´øÀíÂÛ¡¾Ð»Ï£µÂ,½¶°¡¿
C177¡¢¹ÌÌåÎïÀíµ¼ÂÛ£¨ÔÖøµÚ°Ë°æ£©¡¾»ùÌ©¶ûÖø,Ïî½ðÖÓ,ÎâÐË»ÝÒë¡¿
C178¡¢¹ÌÌåÎïÀíµ¼ÂÛ¡¾»ùÌ«¶ûÖø,Ñî˳»ªµÈÒë¡¿
C179¡¢¹ÌÌåÎïÀí»ù´¡¡¾ÑÖÊØÊ¤¡¿¡¾±±¾©´óѧÎïÀíѧ´ÔÊé¡¿
C180¡¢¹ÌÌåÎïÀíϰÌâÏê½â¡¾Kittel¡¿¡¾Îâ´úÃùµÈ½â´ð¡¿
C181¡¢¹ÌÌåÎïÀíѧ¡¾»ÆÀ¥¡¿
C182¡¢¹ÌÌåÎïÀíѧµÄÁ¿ºÍµ¥Î»¡¾ÍõÒÔÃú¡¿¡¾Á¿ºÍµ¥Î»´ÔÊé¡¿15
C183¡¢¹ÌÌåÓë±íÃæ¡¾»ô·òÂüÖø,¹ùºééà,Àî¾²Òë¡¿
C184¡¢¹ÌÌåÖеĹâÉ¢É䡾¿¨¶àÄÉÖ÷±à,ÃÓÕýè¤,ëÅå·ÒÒë¡¿
C185¡¢¹âµÄ¸ÉÉæ¼°ÆäÓ¦Óá¾ÏÄѧ½¡¿
C186¡¢¹âµç×Ó¼¼Êõ¡¾ÅËÓ¢¿¡,×Þ½¨¡¿
C187¡¢¹âȫϢÊֲ᡾¿¼¶û·Æ¶ûµÂÖø,Ö£Ó¹Òë¡¿
C188¡¢¹âȫϢѧ¼°ÆäÓ¦Óá¾ÓÚÃÀÎÄ¡¿
C189¡¢¹âѧ¡¾ÃÀ¹úÎïÀíÊÔÌâÓë½â´ð¡¿µÚ3¾í
C190¡¢¹âѧ(Éϲá)¡¾ÕÔ¿»ª,ÖÓÎý»ª¡¿
C191¡¢¹âѧ(ϲá)¡¾ÕÔ¿»ª,ÖÓÎý»ª¡¿
C192¡¢¹âѧ¡¾ÆÕÀʿˡ¿¡¾ÀíÂÛÎïÀíѧµ¼Òý¡¿µÚ4¾í
C193¡¢¹âѧ¡¾ÕÂÖ¾Ãù,ÉòÔª»ª,³Â»Ý·Ò¡¿
C194¡¢¹âѧ¡ª¡ª¹ØÓÚ¹âµÄ·´Éä¡¢ÕÛÉä¡¢¹ÕÕÛºÍÑÕÉ«µÄÂÛÎÄ¡¾Å£¶ÙÖø,ÖÜÔÀÃ÷,ÊæÓ×Éú,ÐÏ·å,Ðܺº¸»Òë¡¿
C195¡¢¹âѧºÍµç×ÓÂÛ¡¾ÅÝÀûÎïÀíѧ½²Òå¡¿2
C196¡¢¹âѧ»ìã硾Õźé¾û¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C197¡¢¹âѧÉè¼Æ¡¾Ðì½ðïÞ,ËïÅà¼Ò±à¡¿
C198¡¢¹âѧÉè¼Æµ¼ÂÛ¡¾ÁÖÓѰú¡¿
C199¡¢¹âѧÉè¼ÆÀíÂÛ»ù´¡(µÚ¶þ°æ)¡¾ÍõÖ®½¡¿
C200¡¢¹âѧÐÂÊÀ½ç-·ÇÏßÐÔ¹âѧdz˵¡¾À×ÊËÕ¿¡¿
C201¡¢¹âѧÐÅÏ¢´¦Àí¡¾ÑîÕñå¾Öø,ĸ¹ú¹â,Ñò¹ú¹â,ׯËÉÁÖÒë¡¿
C202¡¢¹âѧÒÇÆ÷Éè¼ÆÊÖ²á(Éϲá)¹âѧÉè¼ÆÓë¹âѧ²âÁ¿¡¾¹âѧÒÇÆ÷Éè¼ÆÊÖ²á±à¼×é¡¿
C203¡¢¹âѧÒÇÆ÷Éè¼ÆÊÖ²á(ϲá)¹âѧÒÇÆ÷½á¹¹Éè¼Æ¡¾¹âѧÒÇÆ÷Éè¼ÆÊÖ²á±à¼×é¡¿
C204¡¢¹âѧÔÀí(ÉÏ)¡¾²£¶÷,ÎÖ¶ú·òÖø,ÑîÝçÝ¥µÈÒëУ¡¿
C205¡¢¹âѧÔÀí(ÏÂ)¡¾²£¶÷,ÎÖ¶ú·òÖø,ÑîÝçÝ¥µÈÒëУ¡¿
C206¡¢¹ãÒå¹þÃܶÙϵͳÀíÂÛ¼°ÆäÓ¦ÓÃ(µÚ1°æ)¡¾Àî¼Ì±ò,ÕÔÏþ»ª,ÁõÕýÈÙ¡¿
C207¡¢¹ãÒåÏà¶ÔÂÛ¡¾µÒÀ¿ËÖø,ÖìÅàÔ¥Òë¡¿
C208¡¢¹ãÒåÏà¶ÔÂÛ¡¾ÁõÁÉ¡¿
C209¡¢¹ãÒåÏà¶ÔÂÛµ¼ÂÛ¡¾Ì¹¸ÇÀïÄáÖø,ÖìÅàÔ¥Òë¡¿
C210¡¢¹ãÒåÏà¶ÔÂÛµÄÊýѧ»ù´¡£ºÁ÷ÐÎÉϵÄÕÅÁ¿·ÖÎö¡¾±ÏÏþÆÕ,¸êµÂ±¤Öø,ÏôÐÀÖÒµÈÒë¡¿
C211¡¢¹ãÒåÏà¶ÔÂÛÒýÂÛ¡¾ÓáÔÊÇ¿¡¿¡¾±±¾©´óѧÎïÀíѧ´ÔÊé¡¿
C212¡¢¹æ·¶³¡µÄÁ¿×ÓÀíÂÛµ¼Òý¡¾·¨½ÝÒ®·ò,˹À·òŵ·òÖø,D.B.PontecorvoÓ¢Òë;ÁõÁ¬ÊÙÒë¡¿
C213¡¢¹æ·¶³¡ÂÛ¡¾ºúÑþ¹â¡¿
C214¡¢¹æ·¶³¡ÓëȺÂÛ¡¢ÍêÈ«¿É»ýÎÊÌ⡾ºî²®Óî¡¿
C215¡¢¹û¿ÇÀïµÄ60Ä꡾»ô½ðµÈÖø,ÀîÓ¾Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ4¼]
C216¡¢¹û¿ÇÖеÄÓîÖæ¡¾»ô½ðÖø,ÎâÖÒ³¬Òë¡¿
C217¡¢¹þÃܶÙϵͳÖеÄÓÐÐòÓëÎÞÐòÔ˶¯¡¾³Ì³çÇì,ËïÒåìÝ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C218¡¢¹þÃܶû¶ÙϵͳµÄÐÁ¼¸ºÎËã·¨¡¾·ë¿µ,ÇØÃÏÕס¿
C219¡¢ºÚ¶´Óëʱ¼äÍäÇú¡ª¡ª°®Òò˹̹µÄÓÄÁ顾Ë÷¶÷Öø,»ô½ðÐò,ÀîÓ¾Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ2¼]
C220¡¢»¯Ñ§¼¤¹â¡¾É£·ïͤ,ÖÜ´óÕý,½ðÓñÆæ,ׯçù¡¿
C221¡¢»ÊµÛÐÂÄÔ¡ª¡ªÓйصçÄÔ¡¢ÈËÄÔ¼°ÎïÀí¶¨ÂÉ¡¾ÅíÂÞË¹Öø,ÐíÃ÷ÏÍ,ÎâÖÒ³¬Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ1¼]8
C222¡¢»ìãçµÄ±¾ÖÊ¡¾ÂåÂ××ÈÖø,Áõʽ´ïµÈÒë,ÖÜÐãæ÷Éó¡¿
C223¡¢»ìãçµÄ΢ÈÅÅоݡ¾ÁõÔøÈÙ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C224¡¢»ìãç¿ØÖÆ¡¾ºú¸Ú,Ïô¾®»ª,Ö£Ö¾¸Õ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C225¡¢»ô½ð½²Ñݼ¡ª¡ªºÚ¶´¡¢Ó¤¶ùÓîÖæ¼°ÆäËû¡¾»ô½ðÖø,¶ÅÐÀÐÀ,ÎâÖÒ³¬Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ1¼]3
C226¡¢»úеÕñ¶¯¡¾¿ÀûÖø,¼ÖÆô·Ò,Áõϰ¾üÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿06
C227¡¢»ù±¾µç··ÖÎö¡¾°ÂÂíÀûÖø,ÀîãåÝ¥,ÕÅÊÀ¾ê,Çð´ºÁáÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿34
C228¡¢¼¤¹â¹âѧ¡¾ÂÀ°Ù´ï¡¿
C229¡¢¼¤¹â¼¼Êõ¡¾À¼ÐÅîÒ,»Æ¹ú±ê,ÕÅÓåéª,Ò¦½¨îý,ÀîêÅ,°²Ø¹Ó¢¡¿
C230¡¢¼¤¹â¼¼Êõ½Ì²Ä
C231¡¢¼ÆËã¶àÌåϵͳ¶¯Á¦Ñ§¡¾ºé¼ÎÕñ¡¿
C232¡¢¼ÆËã¹ÌÌåÎïÀíѧ¡¾×ÞÏÜÎä,½ð×¼ÖÇ¡¿
C233¡¢¼ÆËã»ú¸¨Öú¹âѧÉè¼ÆµÄÀíÂÛÓëÓ¦Óá¾ÀîÁÖ,°²Á¬Éú¡¿
C234¡¢¼ÆËãÎïÀí¡¾¹¬Ò°¡¿
C235¡¢¼ÆËãÎïÀí¡¾ÑîÇ彨¡¿
C236¡¢¼ÆËãÎïÀí¸ÅÂÛ¡¾ÇØÔªÑ«,ÕÅËø´ºµÈ¡¿
C237¡¢¼ÆËãÎïÀí»¯Ñ§¡¾Ó¢Ðì¸ù,ÕŹúÕþ¡¿
C238¡¢¼ÆËãÎïÀíѧ¡¾Steven E. KooninÖø,ÇØ¿Ë³ÏÒë¡¿
C239¡¢¼ÆËãÎïÀíѧ¡¾ÕÅ¿ªÃ÷,¹Ë²ýöΡ¿
C240¡¢¼ÍÄî°®Òò˹̹ÒëÎ¾ÕÔÖÐÁ¢,ÐíÁ¼Ó¢¡¿
C241¡¢¼ÓËÙÆ÷ÎïÀí»ù´¡(³õ°æ)¡¾³Â¼Ñ¶ý¡¿
C242¡¢½á¹¹¶¯Á¦Ñ§ÎÊÌâÏê½â¡¾¿ËÀ·ò,Åí×ȶ÷Öø,ÀîÏÔÖÇ,³ÂÕ¹ºãÒë¡¿
C243¡¢½á¹¹»¯Ñ§¡¾½ÔªÉú¡¿
C244¡¢½á¹¹Æ£ÀÍÇ¿¶ÈÉè¼ÆÓëʧЧ·ÖÎö¡¾ÍõѧÑÕ,Ëιã»Ý¡¿
C245¡¢½á¾§»¯Ñ§µ¼ÂÛ(µÚ¶þ°æ)¡¾Ç®ÒÝÌ©¡¿
C246¡¢½ðÊôÎïÀíѧµÚ1¾í½á¹¹ÓëȱÏÝ¡¾·ë¶Ë,ÇðµÚÈÙ¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C247¡¢½ðÊôÎïÀíѧµÚ2¾íÏà±ä¡¾·ë¶Ë,ÇðµÚÈÙ¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C248¡¢½ðÊôÎïÀíѧµÚ3¾í½ðÊôÁ¦Ñ§ÐÔÖÊ¡¾·ë¶Ë,ÇðµÚÈÙ¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C249¡¢½ðÊôÎïÀíѧµÚ4¾í³¬µ¼µçÐԺʹÅÐÔ¡¾·ë¶Ë,ÇðµÚÈÙ¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C250¡¢½ðÊôÓëºÏ½ðµÄ³¬µ¼µçÐÔ¡¾ÈÃÄÉ¡¿
C251¡¢½ðÊôÓëÌմɵĵç×Ó¼°´ÅѧÐÔÖÊ(II)¡¾K.H.J.°ÍФÖ÷±à,Õ²ÎÄɽ,ÕÔ¼û¸ßµÈÒë¡¿¡¾²ÄÁÏ¿ÆÑ§Óë¼¼Êõ´ÔÊé¡¿(µÚ3B¾í)
C252¡¢½ü´úXÉäÏ߶ྦྷÌåÑÜÉä-ʵÑé¼¼ÊõÓëÊý¾Ý·ÖÎö¡¾ÂíÀñ¶Ø¡¿¡¾·ÖÎö¿ÆÑ§ÏÖ´ú·½·¨´ÔÊé¡¿
C253¡¢½ü´ú¾§Ìåѧ»ù´¡Éϲ᡾Õſ˴ӡ¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C254¡¢½ü´ú¾§Ìåѧ»ù´¡Ï²᡾Õſ˴ӡ¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C255¡¢½ü´úÎïÀíѧ(ÔµÚ¶þ°æ)¡¾¸êÌØÂÞ,ÈøÍòÖø,Ëï×ÚÑïÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿13
C256¡¢½ü´úÎïÀíѧ¼Ò´«¼Ç¡¾¿ËÀ³ÒòµÈ׫,Å·Ñôû_µÈÒë¡¿
C257¡¢¾µäµç¶¯Á¦Ñ§(ÉÏ)¡¾½Ü¿ËÑ·Öø,ÖìÅàÔ¥Òë¡¿
C258¡¢¾µäµç¶¯Á¦Ñ§(ÏÂ)¡¾½Ü¿ËÑ·Öø,ÖìÅàÔ¥Òë¡¿
C259¡¢¾µäºÍÏÖ´úÊýѧÎïÀí·½³Ì¡¾Â½ÕñÇò¡¿
C260¡¢¾µäÁ¦Ñ§(µÚ¶þ°æ)¡¾H.¸êµÂ˹̹¡¿
C261¡¢¾µäÁ¦Ñ§¡¾ÕÅÆôÈÊ¡¿¡¾ÀíÂÛÎïÀíѧ¡¿Ö®1
C262¡¢¾µäÁ¦Ñ§µÄÊýѧ·½·¨¡¾°¢Åµ¶ûµÂÖø,ÆëÃñÓÑÒë¡¿
C263¡¢¾µäÁ¦Ñ§-ÀíÂÛ¸ÙÒªÓëϰÌ⡾Îâ³ÐÛ÷¡¿
C264¡¢¾ªÈ˵ļÙ˵¡ª¡ªÁé»êµÄ¿ÆÑ§Ì½Ë÷¡¾¿ËÀï¿ËÖø,ÍôÔÆ¾Å,ÆëÏèÁÖ,ÎâÐÂÄê,ÔøÏþ¶«ÒëУ¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ2¼]
C265¡¢¾§ÌåȱÏÝ¡¾ºàµÂÉ¡¿¡¾¹ÌÌåµÄ½á¹¹ºÍÐÔÖÊ´ÔÊé¡¿
C266¡¢¾§ÌåÉ«ÐÄÎïÀíѧ¡¾·½ÊéäÆ,ÕÅÆôÈÊ¡¿
C267¡¢¾§ÌåÉú³¤¿ÆÑ§Óë¼¼Êõ(µÚ¶þ°æ)Éϲ᡾Õſ˴Ó,ÕÅÀÖ?Œ¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C268¡¢¾§ÌåÉú³¤¿ÆÑ§Óë¼¼Êõ(µÚ¶þ°æ)ϲ᡾Õſ˴Ó,ÕÅÀÖ?Œ¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C269¡¢¾§Ìåλ´íÀíÂÛ»ù´¡(µÚ1¾í)¡¾Ñî˳»ª¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C270¡¢¾§Ìåλ´íÀíÂÛ»ù´¡(µÚ2¾í)¡¾Ñî˳»ª,¶¡Á¥»ª¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C271¡¢¾§ÌåÎïÀíѧ¡¾Ð¤¶¨È«,ÍõÃñ¡¿
C272¡¢¾§ÌåÎïÀíѧ¡¾ÓáÎĺ£,ÁõÍîÓý¡¿
C273¡¢¾²Á¦Ñ§Óë²ÄÁÏÁ¦Ñ§¡¾ÄÉÊ²Öø,¹ù³¤ÃúÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿10
C274¡¢¾ØÕóÂÛµäÐÍÌâ½âÎö¼°×Ô²âÊÔÌâ(µÚ2°æ)¡¾ÕſԺ,ÐìÖÙ,½ȫ¡¿
C275¡¢îÖÏ¡ÍÁÔªËØ¡¾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ07¾í
C276¡¢¿Æ¼¼ÂÛÎÄд×÷¡¢Ðû¶ÁÓë´ð±ç¡¾¸ßÁ¬»ª,ÕÔ×ÚÐ÷,³É´«°ñ¡¿
C277¡¢¿Æ¼¼ÂÛÎÄÖø±à¹æ·¶¡¾³Â¹ú½£¡¿
C278¡¢¿Æ¼¼ÂÛÎÄ׫дָÄÏ¡¾½¨·½·½¡¿¡¾Àí¹¤ÀàרҵÑо¿Éú½ÌѧÓÃÊé¡¿
C279¡¢¿ÆÑ§ÐÂÁìÓòµÄ̽Ë÷¡¾¿¼·òÂüÖø,³ØÀöƽ,²ÌÛÃÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ3¼]
C280¡¢¿ÉŵĶԳơª¡ªÏÖ´úÎïÀíѧÖÐÃÀµÄ̽Ë÷¡¾ÈÈÖø,ÐÜÀ¥Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ1¼]5
C281¡¢¿Õ¼äµÈÀë×ÓÌåÖеĹ²¨¡¾ÍõµÂŸ~,ÎâµÂ½ð,»Æ¹âÁ¦¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C282¡¢¿ä¿ËÓëÃÀÖÞ±ª¡ª¡ª¼òµ¥ÐԺ͸´ÔÓÐÔµÄÆæÓö¡¾¸Ç¶ûÂüÖø,ÑÚþ,ÀîÏæÁ«µÈÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ2¼]
C283¡¢ÀëÉ¢Êýѧ¡¾ÀûÆÕÊæ¶û´Ä,ÀûÆÕÉÖø,ÖÜÐ˺Í,ËïÖ¾ÈË,ÕÅѧ±óÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿03
C284¡¢ÀèÂü¼¸ºÎ³õ²½¡¾°×Õý¹ú¡¿
C285¡¢Àî´úÊýÀ´úÊý¼°ÔÚÎïÀíѧÖеÄÓ¦Óá¾ËïºéÖÞ,º«ÆäÖÇ¡¿¡¾±±¾©´óѧÎïÀíѧ´ÔÊé¡¿
C286¡¢ÀíÂÛÁ¦Ñ§¡¾ÏôÁúÏè,¼ÖÆô·Ò,µË»ÝºÍ¡¿
C287¡¢ÀíÂÛÁ¦Ñ§¼òÃ÷½Ì³Ì¡¾³ÂÊÀÃñ¡¿
C288¡¢ÀíÂÛÁ¦Ñ§½Ì³Ì(µÚ¶þ°æ)¡¾ÖÜÑܰء¿
C289¡¢ÀíÂÛÁ¦Ñ§½Ì³Ì(µÚ¶þ°æ)ѧϰ¸¨µ¼Ê顾Õź걦¡¿¡¾ÀíÂÛÎïÀíѧϰ¸¨µ¼´ÔÊé¡¿
C290¡¢ÀíÂÛÁ¦Ñ§½âÌâ·ÖÎö¡¾Ðí½¡Ãñ,¼Í±êÒå¡¿
C291¡¢ÀíÂÛÁ¦Ñ§Ë¼¿¼Ì⼯¡¾³Ì½ù¡¿
C292¡¢ÀíÂÛÍÁÁ¦Ñ§¡¾ÉòÖ齡¿
C293¡¢ÀíÂÛÎïÀí»ù´¡¡¾Åí»¸Îä,ÐìÎýÉê¡¿¡¾±±¾©´óѧÎïÀíѧ´ÔÊé¡¿
C294¡¢ÀíÂÛÎïÀíѧÖеļÆËã»úÄ£Äâ·½·¨¡¾Heermann¡¿
C295¡¢Á¦Ñ§¡¾ÀʵÀÀíÂÛÎïÀí½Ì³Ì¡¿¾í01
C296¡¢Á¦Ñ§¡¾ÃÀ¹úÎïÀíÊÔÌâÓë½â´ð¡¿µÚ1¾í
C297¡¢Á¦Ñ§(ÀíÂÛÁ¦Ñ§²¿·Ö)¡¾ÁºÀ¥íµ¡¿
C298¡¢Á¦Ñ§¡¾KittleÖø,³Â±üǬÒë¡¿¡¾²®¿ËÀûÎïÀíѧ½Ì³Ì¡¿¾í1
C299¡¢Á¦Ñ§¡¾ÕÅÈý»Û,Íõ»¢Öé¡¿¡¾´óѧÎïÀíѧ¡¿µÚ1²á
C300¡¢Á¦Ñ§ÏµÍ³µÄ¶Ô³ÆÐÔÓë²»±äÁ¿¡¾ÕÔÔ¾Óî,÷·ïÏè¡¿
C301¡¢Á¦Ñ§Ó빤³Ì¿ÆÑ§×¨ÒµÓ¢ÓÖܹ⾼¡¿
C302¡¢Á¦Ñ§ÓëÈÈÁ¦Ñ§¡¾Alonso,FinnºÏÖø,Áº±¦ºéÒë¡¿¡¾´óѧÎïÀíѧ»ù´¡¡¿µÚ1¾í
C303¡¢Á¦Ñ§ÖеÄÏàËÆ·½·¨ÓëÁ¿¸ÙÀíÂÛ¡¾Ð»¶à·òÖø,ÉòÇàÒë¡¿¡¾Á¦Ñ§ÃûÖøÒë´Ô¡¿
C304¡¢Á£×Ӻͳ¡¡¾Â¬ÀïÖø,¶Ã÷µÂµÈÒë¡¿
C305¡¢Á¬ÐøÃ½Öʵ綯Á¦Ñ§(Éϲá)¡¾ÀʵÀÀíÂÛÎïÀí½Ì³Ì¡¿¾í08
C306¡¢Á¬ÐøÃ½Öʵ綯Á¦Ñ§(ϲá)¡¾ÀʵÀÀíÂÛÎïÀí½Ì³Ì¡¿¾í08
C307¡¢Á¿×Ó³¡ÂÛ(ÉÏ)¡¾ÒÀ½Ý¿ËÉ,׿°Ø¶ûÖø,¶Å¶«ÉúµÈÒë¡¿
C308¡¢Á¿×Ó³¡ÂÛ(ÏÂ)¡¾ÒÀ½Ý¿ËÉ,׿°Ø¶ûÖø,¶Å¶«ÉúµÈÒë¡¿
C309¡¢Á¿×Ó³¡ÂÛ¡¾ÖìºéÔª¡¿
C310¡¢Á¿×Ó³¡ÂÛµ¼Òý(ÉÏ)¡¾Ñî±þ÷ë¡¿
C311¡¢Á¿×Ó³¡ÂÛµ¼Òý(ÏÂ)¡¾Ñî±þ÷ë¡¿
C312¡¢Á¿×Ó³¡ÂÛÒýÂÛ¡¾³Ì¹ú¾ù¡¿
C313¡¢Á¿×ӵ綯Á¦Ñ§¡¾ÀʵÀÀíÂÛÎïÀí½Ì³Ì¡¿¾í04
C314¡¢Á¿×ӵ綯Á¦Ñ§¡¾Greiner,ReinhardtÖø,Âí²®Ç¿,Ñ¾ü,ÐìµÂÖ®,ÉòºéÇåÒë,ÕÅÆôÈÊÉóУ¡¿
C315¡¢Á¿×ӵ綯Á¦Ñ§½²Ò塾R.P.·ÑÂüÖø¡¿
C316¡¢Á¿×Ó¶àÌåÀíÂÛ£º´ÓÉù×ӵįðÔ´µ½¹â×Ӻ͵ç×ӵįðÔ´¡¾ÎÄС¸ÕÖø,ºú±õÒë¡¿¡¾µ±´ú¿ÆÑ§Ç°ÑØÂÛ´Ô¡¿
C317¡¢Á¿×Ó¹âѧµ¼ÂÛ¡¾Éò¿Â¡¿
C318¡¢Á¿×Ó¹âѧ»ù´¡¡¾Ñî²®¾ý¡¿
C319¡¢Á¿×Ó»¯Ñ§£º»ù±¾ÔÀíºÍ´ÓÍ·¼ÆËã·¨Ìâ½â¡¾ÀèÀÖÃñ,ÍõµÂÃñ,ҶѧÆä¡¿
C320¡¢Á¿×Ó»¯Ñ§¡ª¡ª»ù±¾ÔÀíºÍ´ÓÍ·¼ÆËã·¨(ÉÏ)¡¾Ðì¹âÏÜ, ÀèÀÖÃñ¡¿
C321¡¢Á¿×Ó»¯Ñ§¡ª¡ª»ù±¾ÔÀíºÍ´ÓÍ·¼ÆËã·¨(ÏÂ)¡¾Ðì¹âÏÜ, ÀèÀÖÃñ¡¿
C322¡¢Á¿×Ó»¯Ñ§¡ª¡ª»ù±¾ÔÀíºÍ´ÓÍ·¼ÆËã·¨(ÖÐ)¡¾Ðì¹âÏÜ, ÀèÀÖÃñ¡¿
C323¡¢Á¿×Ó»ìã硾¹ËÑã¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C324¡¢Á¿×ÓÀíÂÛ¡¾²£Ä·¡¿
C325¡¢Á¿×ÓÀíÂÛµÄÀúÊ··¢Õ¹µÚÒ»¾íµÚÒ»·Ö²á¡¾Ã·À,À×ÇÙ±¤Öø,¸ê¸ïµÈÒë¡¿
C326¡¢Á¿×ÓÁ¦Ñ§¡¾ÃÀ¹úÎïÀíÊÔÌâÓë½â´ð¡¿µÚ6¾í
C327¡¢Á¿×ÓÁ¦Ñ§ ¼×²¿¡¾Îâ´óéà¡¿¡¾Îâ´óéàÀíÂÛÎïÀí¡¿µÚ6²á
C328¡¢Á¿×ÓÁ¦Ñ§ ÒÒ²¿¡¾Îâ´óéà¡¿¡¾Îâ´óéàÀíÂÛÎïÀí¡¿µÚ7²á
C329¡¢Á¿×ÓÁ¦Ñ§(µÚ¶þ°æ)¡¾ËÕÈêﬡ¿
C330¡¢Á¿×ÓÁ¦Ñ§(µÚ¶þ¾í)¡¾Ã·Î÷ÑÇÖø,ËÕÈêï¬,ÌÀ¼ÒïÞÒë¡¿
C331¡¢Á¿×ÓÁ¦Ñ§(µÚÒ»¾í)¡¾Ã·Î÷ÑÇÖø,ËÕÈêï¬,ÌÀ¼ÒïÞÒë¡¿
C332¡¢Á¿×ÓÁ¦Ñ§(µÚÒ»¾íÉϲá)¡¾C.Cohen-Tannoudji,B.Din,F.LaloeºÏÖø,Áõ¼ÒÚÓ,³ÂÐÇ¿üÒë¡¿
C333¡¢Á¿×ÓÁ¦Ñ§(·ÇÏà¶ÔÂÛÀíÂÛ)ÉÏ¡¾ÀʵÀÀíÂÛÎïÀí½Ì³Ì¡¿¾í03
C334¡¢Á¿×ÓÁ¦Ñ§(·ÇÏà¶ÔÂÛÀíÂÛ)Ï¡¾ÀʵÀÀíÂÛÎïÀí½Ì³Ì¡¿¾í03
C335¡¢Á¿×ÓÁ¦Ñ§(¾í1µÚÈý°æ)¡¾Ôø½÷ÑÔ¡¿¡¾ÏÖ´úÎïÀíѧ´ÔÊé¡¿
C336¡¢Á¿×ÓÁ¦Ñ§(¾í2µÚÈý°æ)¡¾Ôø½÷ÑÔ¡¿¡¾ÏÖ´úÎïÀíѧ´ÔÊé¡¿
C337¡¢Á¿×ÓÁ¦Ñ§(Éϲá)¡¾²Ì½¨»ª¡¿
C338¡¢Á¿×ÓÁ¦Ñ§£ºµ¼ÂÛ¡¾¹ËÀ³ÄÉÖø,ÍõµÂÃ÷,Íôºñ»ùÒë,ÕÅÆôÈÊÉóУ¡¿
C339¡¢Á¿×ÓÁ¦Ñ§£º¶Ô³ÆÐÔ¡¾¹ËÀ³ÄÉ,çÑÀÕÖø,ǮԣÀ¥,³É¡¾ÍõÀû¡¿Òë,ÕÅÆôÈÊÉóУ¡¿
C340¡¢Á¿×ÓÁ¦Ñ§¡¾·ÑÃ×Öø,ÂÞ¼ªÍ¥Òë¡¿
C341¡¢Á¿×ÓÁ¦Ñ§¡¾Æ¤À³¸ñ,ÆÕÄáÄá,Ôú°¢Â³¶ûÖø,ÐÏÔóÈÊ,Äþ²¬Òë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿23
C342¡¢Á¿×ÓÁ¦Ñ§¡¾Ç®²®³õ¡¿
C343¡¢Á¿×ÓÁ¦Ñ§¡¾ËÕÈêﬡ¿¡¾ÀíÂÛÎïÀíѧ»ù´¡½Ì³Ì´ÔÊé¡¿
C344¡¢Á¿×ÓÁ¦Ñ§¡¾Ï¯·òÖø,ÀîÊçæµ,³Â³ç¹âÒë,·½ÀøÖ®Ð£¡¿
C345¡¢Á¿×ÓÁ¦Ñ§¡¾ÕÅÆôÈÊ¡¿¡¾ÀíÂÛÎïÀíѧ¡¿Ö®4
C346¡¢Á¿×ÓÁ¦Ñ§¡¾ÕÅÓÀµÂ¡¿¡¾21ÊÀ¼Í¸ßµÈԺУ½Ì²Ä¡¿
C347¡¢Á¿×ÓÁ¦Ñ§µ¼ÂÛ¡¾Ôø½÷ÑÔ¡¿
C348¡¢Á¿×ÓÁ¦Ñ§µÄ»ù±¾¸ÅÄ¹Øºé¡¿
C349¡¢Á¿×ÓÁ¦Ñ§µÄÕÜѧ¡¾ÑÅĬָ,ÇØ¿Ë³ÏÒë¡¿
C350¡¢Á¿×ÓÁ¦Ñ§»ù´¡¡¾¹Øºé¡¿
C351¡¢Á¿×ÓÁ¦Ñ§Ë¼¿¼Ì⼯¡¾Íõ¼ÒÇì¡¿
C352¡¢Á¿×ÓÁ¦Ñ§Ï°Ì⼯(Ôö¶©µÚÈý°æ)¡¾Ìعþ¶ûÑ¡±à,ÍõÕýÇå,Àî¹â»Ý,ÀîÎIJ©Òë¡¿
C353¡¢Á¿×ÓÁ¦Ñ§Ï°Ì⾫½â¡¾ÎâÇ¿,ÁøÊ¢µä¡¿¡¾´óѧÎïÀíϰÌ⾫½âϵÁС¿
C354¡¢Á¿×ÓÁ¦Ñ§Ï°Ì⾫ѡÓëÆÊÎö(µÚ¶þ°æ)(Éϲá)¡¾Ç®²®³õ,Ôø½÷ÑÔ¡¿
C355¡¢Á¿×ÓÁ¦Ñ§Ï°Ì⾫ѡÓëÆÊÎö(µÚ¶þ°æ)(ϲá)¡¾Ç®²®³õ,Ôø½÷ÑÔ¡¿
C356¡¢Á¿×ÓÁ¦Ñ§Ð½øÕ¹(µÚ1¼)¡¾Ôø½÷ÑÔ,ÅáÊÙïÞ¡¿
C357¡¢Á¿×ÓÁ¦Ñ§Ð½øÕ¹(µÚ2¼)¡¾Ôø½÷ÑÔ,ÅáÊÙïÞ,Áú¹ð³¡¿
C358¡¢Á¿×ÓÁ¦Ñ§Ð½øÕ¹(µÚ3¼)¡¾Ôø½÷ÑÔ,Áú¹ð³,ÅáÊÙïÞ¡¿
C359¡¢Á¿×ÓÁ¦Ñ§Óë·¾¶»ý·Ö¡¾·ÑÂü¡¿
C360¡¢Á¿×ÓÁ¦Ñ§ÔÀí¡¾µÒÀ¿ËÖø,³ÂÏ̺àÒë¡¿
C361¡¢Á¿×ÓÁ¦Ñ§ÖеÄÉ¢ÉäÎÊÌ⡾¿¦ÐËÁÖÖ÷±à,ÐÜîÚÇì±àÖø¡¿¡¾Á¿×ÓÁ¦Ñ§½Ìѧ´ÔÊé¡¿
C362¡¢Á¿×ÓÁ¦Ñ§ÖеÄÊýѧ·½·¨£ºÉ¢ÉäÎÊÌ⡾³¯ÓÀÕñÒ»ÀɵÈÖø,ÖÜÃñÇ¿µÈÒë¡¿¡¾ÏÖ´úÓ¦ÓÃÊýѧ´ÔÊé¡¿
C363¡¢Á¿×ÓÂÛ±çÒÉ¡¾Ê·ÄÏ·É¡¿
C364¡¢Á¿×ÓÂÛµÄÎïÀíÔÀí¡¾º£É²®Öø,ÍõÕýÐеÈÒë¡¿
C365¡¢Á¿×ÓÂÛÓëÔ×ӽṹ¡¾Îâ´óéà¡¿¡¾Îâ´óéàÀíÂÛÎïÀí¡¿µÚ2²á
C366¡¢Á¿×ÓÊ·»°¡¾»ô·òÂü¡¿
C367¡¢Á¿×Óͳ¼ÆµÄ¸ñÁÖº¯ÊýÀíÂÛ¡¾²Ì½¨»ª,¹¨²ýµÂ,ҦϣÏÍ,ËïöÎ,ÀîÕýÖÐ,ÎâÝæÈç¡¿
C368¡¢Á¿×Óͳ¼ÆÁ¦Ñ§¡¾ÕÅÏÈε¡¿
C369¡¢Á¿×Óͳ¼ÆÁ¦Ñ§µ¼ÂÛ¡¾²£¸êÁô²£·ò¡¿
C370¡¢Á¿×Óͳ¼ÆÎïÀíѧ¡¾±±¾©´óѧÎïÀíϵ¡¿
C371¡¢Á¿×ÓÎïÀí(µÚ¶þ°æ)¡¾ÕÅÈý»Û¡¿¡¾´óѧÎïÀíѧ¡¿µÚ5²á
C372¡¢Á¿×ÓÎïÀí¡¾WichmannÖø,¸´µ©´óѧÎïÀíϵÒë¡¿¡¾²®¿ËÀûÎïÀíѧ½Ì³Ì¡¿¾í4
C373¡¢Á¿×ÓÎïÀí¡¾ÕÔ¿»ª,ÂÞεÒð¡¿¡¾Ð¸ÅÄîÎïÀí½Ì³Ì¡¿
C374¡¢Á¿×ÓÎïÀíѧµ¼ÂÛ¡¾¸¥Âׯæ,Ì©ÀÕÖø,ÐìÐ÷óÆ,ÎâÒúÏÒë¡¿¡¾MITÎïÀíѧµ¼ÂÛ´ÔÊé¡¿¾í4
C375¡¢Á¿×ÓÎïÀíѧÓëͳ¼ÆÎïÀíѧ¡¾Alonso,FinnºÏÖø,Áº±¦ºéÒë¡¿¡¾´óѧÎïÀíѧ»ù´¡¡¿µÚ3¾í
C376¡¢Á÷Ì嶯Á¦Ñ§¡¾ÐÝ˹,²¼Àµ¶ÙÖø,ÐìÑàºî,¹ýÃ÷µÀ,ÐìÁ¢¹¦,³ÂÒåÁ¼Òë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿17
C377¡¢Á÷ÌåÁ¦Ñ§(ÉÏ)¡¾ÀʵÀÀíÂÛÎïÀí½Ì³Ì¡¿¾í06
C378¡¢Á÷ÌåÁ¦Ñ§(ÉÏ)¡¾ÎâÍûÒ»¡¿
C379¡¢Á÷ÌåÁ¦Ñ§(ÏÂ)¡¾ÀʵÀÀíÂÛÎïÀí½Ì³Ì¡¿¾í06
C380¡¢Á÷ÌåÁ¦Ñ§(ÏÂ)¡¾ÎâÍûÒ»¡¿
C381¡¢Á÷ÌåÁ¦Ñ§¡¾ÁºÖÇȨ¡¿
C382¡¢Á÷ÌåÁ¦Ñ§¡¾Óá¼Î»¢¡¿
C383¡¢Á÷ÌåÁ¦Ñ§´óÈ«¡¾ÕÅÔ¶¾ýУ±à,Íõƽ,º«ÕñÐË,ÖìÄ«æµ,ÖÜÔª¾ûµÈÒë¡¿
C384¡¢Á÷ÌåÁ¦Ñ§ÖеÄÓÐÏÞÔªÓë±ß½çÔª·½·¨¡¾ÁõÏ£ÔÆ,ÕÔÈóÏé¡¿
C385¡¢Á÷ÐΡ¾ÐìÉÁÖ,Ѧ´º»ª¡¿
C386¡¢Â±ËØ¡¢Í·Ö×塢п·Ö×塾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ06¾í
C387¡¢Â×ÇÙ´«¡¾É½±¾´ó¶þÀÉÖø,ÎͼËÕÒë¡¿
C388¡¢Âß¼µÄÒýÇæ¡¾´÷Î¬Ë¹Öø,ÕŲ·ÌìÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ4¼]
C389¡¢ÃÉÌØ¿¨ÂÞ·½·¨¼°ÆäÓ¦Óãº1993-1997¡¾Åá¹³É,ÍõÖÙÆæÖ÷±à¡¿
C390¡¢ÃÉÌØ¿¨ÂÞ·½·¨ÒýÂÛ¡¾Öì±¾ÈÊ¡¿
C391¡¢ÃÉÌØ-¿¨ÂåÄ£Äâ·½·¨µÄÀíÂÛÓëÓ¦Óá¾ÐìÖӼá¿
C392¡¢ÃÌ·Ö×åÌúϵ²¬Ïµ¡¾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ09¾í
C393¡¢ÃâÒߵķÇÏßÐÔÄ£ÐÍ¡¾Æá°²É÷,¶Åæ¿Ó¢¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C394¡¢Ä¦²ÁѧÔÀí(µÚ2°æ)¡¾ÎÂÊ«Öý,»ÆÆ½¡¿
C395¡¢ÄÂ˹±¤¶ûÆ×ѧ¡¾ÂíÈçè°,ÐìӢͥ¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C396¡¢ÄÉÃ×±¡Ä¤¼¼ÊõÓëÓ¦Óᾳ¹⻪,µË½ðÏé¡¿
C397¡¢ÄÉÃ×µç×Óѧ¡¾Ñ¦ÔöȪ,ÁõΩÃô¡¿
C398¡¢Äý¾Û̬´ÅÐÔÎïÀí¡¾½ªÊÙͤ,ÀîÎÀ¡¿
C399¡¢Äý¾Û̬ÎïÀíѧ(ÉϾí)¡¾·ë¶Ë,½ð¹ú¾û¡¿¡¾Ñо¿Éú½ÌѧÓÃÊé¡¿
C400¡¢Å£½òÎïÀíѧ´Êµä(3rd Ed)¡¾Alan Isaacs¡¿²»Ì«ÇåÎú
C401¡¢Åäλ»¯Ñ§¡¾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ12¾í
C402¡¢îë¼îÍÁ½ðÊôÅðÂÁïØ·Ö×塾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ02¾í
C403¡¢ÆÕͨÎïÀíѧ(µÚÎå°æ)1¡¾³ÌÊØä¨,½Ö®ÓÀÖ÷±à,ºúÅÌÐÂ,ÌÀع¿¥,ËοªÐÀÐÞ¶©¡¿
C404¡¢ÆÕͨÎïÀíѧ(µÚÎå°æ)2¡¾³ÌÊØä¨,½Ö®ÓÀÖ÷±à,ºúÅÌÐÂ,ÌÀع¿¥,ËοªÐÀÐÞ¶©¡¿
C405¡¢ÆÕͨÎïÀíѧ(µÚÎå°æ)3¡¾³ÌÊØä¨,½Ö®ÓÀÖ÷±à,ºúÅÌÐÂ,ÌÀع¿¥,ËοªÐÀÐÞ¶©¡¿
C406¡¢ÆÕͨÎïÀíѧµÚ1²á(1982ÄêÐÞ¶©±¾)¡¾³ÌÊØä¨,½Ö®ÓÀ¡¿µÚËİæ
C407¡¢ÆÕͨÎïÀíѧµÚ2²á(1982ÄêÐÞ¶©±¾)¡¾³ÌÊØä¨,½Ö®ÓÀ¡¿µÚËİæ
C408¡¢Ç§ÒÚ¸öÌ«Ñô¡ª¡ªºãÐǵĵ®Éú¡¢ÑݱäºÍË¥Íö¡¾»ùÅí¹þ¶÷Öø,ÉòÁ¼ÕÕ,»ÆÈóǬÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ2¼]
C409¡¢Ç¿Á÷´øµçÁ£×ÓÊøÎïÀíѧµ¼ÂÛ¡¾Ã×ÀÕÖø,ÁõÎýÈýµÈÒë¡¿
C410¡¢ÇâÄÜ¡¾³Âµ¤Ö®¡¿
C411¡¢È«Ï¢ÏÔʾ¼¼Êõ¡¾ÓÚÃÀÎÄ,Õž²·½¡¿
C412¡¢ÈºÂÛ¡¾º«ÆäÖÇ,ËïºéÖÞ¡¿
C413¡¢ÈºÂÛ¼°ÆäÔÚ·Ö×ӽṹÖеÄÓ¦Óá¾ÀîÔËÂס¿
C414¡¢ÈºÂÛ¼°ÆäÔÚ¹ÌÌåÎïÀíÖеÄÓ¦Óá¾ÐìÍñÌÄ,¿¦ÐËÁÖ¡¿
C415¡¢ÈºÂÛ¼°ÆäÔÚÁ£×ÓÎïÀíѧÖеÄÓ¦ÓᾸ߳çÊÙ¡¿
C416¡¢ÈºÂÛ¼°ÆäÔÚÎïÀíѧÖеÄÓ¦Óá¾Ð»Ï£µÂ,½¯Æ½,½·Ü¡¿¡¾ÏÖ´úÎïÀíѧ´ÔÊé¡¿
C417¡¢ÈºÂÛϰÌ⾫½â¡¾ÂíÖÐæë¡¿
C418¡¢ÈºÂÛÓë¸ßµÈÁ¿×ÓÁ¦Ñ§µ¼ÂÛ¡¾ÐÜîÚÇì,ºÎ±¦Åô¡¿
C419¡¢ÈºÂÛÓëÁ¿×ÓÁ¦Ñ§¡¾Íß¶ûµÇÖø,ÕÔÕ¹ÔÀÒë¡¿
C420¡¢ÈºÂÛÔÚµç×Ó¹âÆ×ÓëÕñ¶¯¹âÆ×ÖеÄÓ¦Óá¾¶»ÛÈã¡¿
C421¡¢ÈÈ·ÖÎö¶¯Á¦Ñ§¡¾ºúÈÙ׿,Ê·Æôìõ¡¿
C422¡¢ÈÈÁ¦Ñ§£¬ÆøÌåÔ˶¯ÂÛ¼°Í³¼ÆÁ¦Ñ§¡¾Îâ´óéà¡¿¡¾Îâ´óéàÀíÂÛÎïÀí¡¿µÚ5²á
C423¡¢ÈÈÁ¦Ñ§¡¾ÍõÖñϪ¡¿
C424¡¢ÈÈÁ¦Ñ§ºÍÆøÌå·Ö×ÓÔ˶¯ÂÛ¡¾ÅÝÀûÎïÀíѧ½²Òå¡¿3
C425¡¢ÈÈÁ¦Ñ§Í³¼ÆÎïÀíϰÌâ½â´ð¡¾çÑʤÇå,Ò¶³çÔ¶¡¿
C426¡¢ÈÈÁ¦Ñ§Óëͳ¼ÆÎïÀí¡¾W.¹ËÀ³ÄÉ,L.ÄÎ˹,H.˹ÍпËÖø,ÖÓÔÆÏüÒë,ÕÅÆôÈÊÉóУ¡¿
C427¡¢ÈÈÁ¦Ñ§Óëͳ¼ÆÎïÀíѧ¡¾¹¨²ýµÂ¡¿
C428¡¢ÈÈÁ¦Óëͳ¼ÆÎïÀí¡¾ÃÀ¹úÎïÀíÊÔÌâÓë½â´ð¡¿µÚ5¾í
C429¡¢ÈÈѧ(µÚ¶þ°æ)¡¾ÕÅÈý»Û¡¿¡¾´óѧÎïÀíѧ¡¿µÚ2²á
C430¡¢ÈËÌå½âÆÊÓëÉúÀíѧ(µÚ¶þ°æ)¡¾·¶µÂºÕÀ·ò,ÎÖµÂÀïË¹Öø,¸ßÐãÀ´,ÕÅïÏȵÈÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿40
C431¡¢Èõ»ìãçÓë×¼¹æÔò°ßͼ¡¾Íô±üºê¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C432¡¢É¢ÉäÀíÂÛ ·ÇÏà¶ÔÂÛÐÔÅöײµÄÁ¿×ÓÀíÂÛ¡¾Ì©ÀÕ¡¿
C433¡¢É«¶Èѧ¡¾¾£Æä³Ï¡¿
C434¡¢É«¶Èѧ¡¾ÌÀ˳Çà¡¿
C435¡¢É¯Ê¿±ÈÑÇ¡¢Å£¶ÙºÍ±´¶à·Ò¡ª¡ª²»Í¬µÄ´´Ôìģʽ¡¾Ç®µÂÀÈû¿¨Öø,ÑÚþ,ÍõÏþÃ÷µÈÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ2¼]
C436¡¢ÉϵÛÓëÐÂÎïÀíѧ¡¾´÷Î¬Ë¹Öø,ÐìÅàÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ1¼]4
C437¡¢ÉϵÛÖÀ÷»×ÓÂ𣺻ìãçÖ®Êýѧ¡¾Ë¹Í¼¶ûÌØÖø,ÅËÌÎÒë,ÖìÕÕÐûУ,³ÂÒÔºèÉó¶©¡¿
C438¡¢ÉñÆæµÄÁ¿×ÓÊÀ½ç¡¾½ÜÀµÂ.Ã×¶û±¾Öø,¹ù¹â²ÓÒë¡¿
C439¡¢ÉúÃüÊÇʲô¡¾Ñ¦¶¨ÚÌÖø,ÂÞÀ´Å·,ÂÞÁɸ´Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ3¼]
C440¡¢ÉúÎﻯѧ(µÚ¶þ°æ)¡¾¿â³¹,ÂÞ¶û˹¶ÙµÈÖø,½ªÕзåµÈÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿37
C441¡¢ÉúÎïѧ(µÚ¶þ°æ)¡¾¸¥ÀïµÂ,ºÚµÂÄªÅµË¹Öø,ÌïÇåäµ,ÒóÓ¨,Âí䣵ÈÒë,ÀîÔÆÀ¼,ÌïÇåäµÐ£¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿38
C442¡¢Éùѧ»ù´¡(ÉÏ)¡¾¶Å¹¦»ÀµÈ¡¿
C443¡¢Éùѧ»ù´¡(ÏÂ)¡¾¶Å¹¦»ÀµÈ¡¿
C444¡¢ÉùѧÃû´ÊÊõÓÂí´óéàÖ÷±à¡¿
C445¡¢Ê±¼ä¡¢¿Õ¼äºÍÍòÎÀïµÂÀ×Öø,ÀîÓ¾Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ3¼]
C446¡¢Ê±¼ä¼òÊ·¡ª¡ª´Ó´ó±¬Õ¨µ½ºÚ¶´¡¾»ô½ðÖø,ÐíÃ÷ÏÍ,ÎâÖÒ³¬Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ1¼]6
C447¡¢Ê±¼ä¼òÊ·Ðø±à¡¾»ô½ðÖø,ºúСÃ÷,ÎâÖÒ³¬Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ1¼]9
C448¡¢Ê±¼äÖ®¼ý¡ª¡ª½Ò¿ªÊ±¼ä×î´ó°ÂÃØÖ®¿ÆÑ§Âó̡¾¿ÂÎÄÄá,º£·Æ¶ûµÂÖø,½ÌÎ,ÏòÊØÆ½Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ1¼]7
C449¡¢Ê±¿Õ±¾ÐÔ¡¾»ô½ð,ÅíÂÞË¹Öø,¶ÅÐÀÐÀ,ÎâÖÒ³¬Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ2¼]
C450¡¢Ê±¿ÕµÄδÀ´¡¾»ô½ðµÈÖø,ÀîÓ¾Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ4¼]
C451¡¢Ê±¿Õ»ìãçºÍñîºÏÓ³Ïó¸ñ×Ó¡¾ÑîάÃ÷¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C452¡¢Ê±ÓòÓÐÏÞ²î·Ö·¨¡¾¸ß±¾Çì¡¿
C453¡¢ÊµÓ÷ûºÅ¶¯Á¦Ñ§¡¾Ö£Î°Ä±,ºÂ²®ÁÖ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C454¡¢ÊµÓÃÊýѧÊÖ²á(µÚ2°æ)¡¾Ò¶ÆäТ,ÉòÓÀ»¶¡¿¸ßÇ啇ɨÃè°æ
C455¡¢ÊµÓÃÎï̬·½³ÌÀíÂÛµ¼Òý¡¾ÐìÎýÉê,ÕÅÍòÏä¡¿
C456¡¢ÊäÔËÀíÂÛ¡¾»Æ×æÇ¢,¶¡¶õ½¡¿
C457¡¢ÊýÀí½ðÈÚÒýÂÛ(µÚÈý°æ)¡¾µÀÁÖÖø,ÈÙϲÃñ,ÓÚÐãÔÆ,ÕÅ·ïÁáÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿05
C458¡¢ÊýÀíÎïÀí»ù´¡¡¾Åí»¸Îä,ÐìÎýÉê¡¿
C459¡¢Êýѧ£ºÈ·¶¨ÐÔµÄɥʧ¡¾¿ËÀ³ÒòÖø,Àîºê¿ýÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ2¼]
C460¡¢ÊýѧÊֲ᡾¡¶ÊýѧÊֲᡷ±àд×é¡¿
C461¡¢ÊýѧÎïÀí·½³Ì¼°ÆäÊýÖµ½â·¨¡¾¸ßÓ¦²Å¡¿
C462¡¢ÊýѧÎïÀí·½·¨(µÚ¶þ°æ)¡¾¹ù¶ØÈÊ¡¿
C463¡¢ÊýѧÎïÀí·½·¨(µÚ¶þ°æ)¡¾ÁºÀ¥íµ¡¿
C464¡¢ÊýѧÎïÀí·½·¨(µÚÈý°æ)¡¾ÁºÀ¥íµ¡¿
C465¡¢ÊýѧÎïÀí·½·¨(¾í1)¡¾¿ÂÀÊ,Ï£²®¶ûÌØÖø,Ç®Ãô,¹ù¶ØÈÊÒ롿ȱ·âÃæ¼°°æÈ¨Ò³
C466¡¢ÊýѧÎïÀí·½·¨(¾í2)¡¾¿ÂÀÊ,Ï£²®¶ûÌØÖø,ÐÜÕñÏè,ÑîÓ¦³½Òë¡¿
C467¡¢ÊýѧÎïÀí·½·¨¡¾Îâ³çÊÔ¡¿¡¾±±¾©´óѧÎïÀíѧ´ÔÊé¡¿
C468¡¢ÊýѧÎïÀí·½·¨½âÌâ·ÖÎö¡¾ÐìÊÀÁ¼¡¿²»ÍêÕû
C469¡¢ÊýѧÎïÀí·½·¨Ö¸µ¼¡¾Ò¦¶ËÕý¡¿
C470¡¢ÊýѧÎïÀíÖеļ¸ºÎ·½·¨¡¾Êæ´Ä¡¿
C471¡¢ÊýѧÎïÀíÖеĽ¥½ü·½·¨¡¾Àî¼Ò´º,ÖÜÏÔ³õ¡¿¡¾Öйú¿ÆÑ§ÔºÑо¿Éú½Ìѧ´ÔÊé¡¿
C472¡¢ÊýÖµ·ÖÎö(µÚ¶þ°æ)¡¾Ê©ÒÀµÂÖø,ÂÞÁÁÉú,°üÑ©ËÉ,Íõ¹úÓ¢Òë,ÁÖÓ¦¾ÙУ¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿22
C473¡¢Êý×Öϵͳµ¼ÂÛ¡¾ÅÁ¶ûĬ,ÅÁ¶ûÂüÖø,³ÂÎÄ¿¬,ÐìÆ¼Æ¼Òë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿31
C474¡¢Êý×ÖÐźŴ¦Àí¡¾º£ÒòË¹Öø,ÕŽ¨»ª,׿Á¦,ÕÅÑÓ»ªÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿30
C475¡¢Êý×ÖÔÀí¡¾Íп˺£Ä·Öø,³ÂÎÄ¿¬,ÐìÆ¼Æ¼Òë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿32
C476¡¢Ë®²ÛÖеĹ²¨¡¾ÄßÍîÝ¥,κÈÙ¾ô¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C477¡¢Ë®Ä¸ÓëÎÏÅ£¡ª¡ªÒ»¸öÉúÎïѧ¹Û²ìÕßµÄÊÖ¼Ç(Ðø)¡¾ÍÐÂíË¹Öø,ÀîÉÜÃ÷Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ2¼]
C478¡¢Ë®ÖªµÀ´ð°¸¡¾½±¾Ê¤Öø,Ô³¶É¾²×ÓÒë¡¿
C479¡¢Ë®ÖªµÀ´ð°¸2ÿһµÎË®¶¼ÓÐÒ»¿ÅÐÄ¡¾½±¾Ê¤Öø,Àîì¿Òë¡¿
C480¡¢Ë¶Ê¿Ñо¿ÉúÈëѧ¿¼ÊÔÆÕͨÎïÀí¾«Ñ¡ÊÔÌâ½â¡¾Â¬ÏȺӡ¿
C481¡¢ËÄάÂÃÐС¾ÆÕÍßµÂÍòÖø,ºú¿ºâ,×ÞÈôÖñÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ4¼]
C482¡¢ËÜÐÔ´óÓ¦±ä΢½á¹¹Á¦Ñ§(µÚ¶þ°æ)¡¾Àî¹úè¡,Ò®ÄÉ¡¿
C483¡¢ËÜÐÔÁ¦Ñ§¡¾¼ÖÄËÎÄ¡¿
C484¡¢Ëæ»úÁ¦Óë·ÇÏßÐÔϵͳ¡¾ºú¸Ú¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C485¡¢Ì«Ñôµç³ØÕóÉè¼ÆÊÖ²á: ¹âµçÄÜת»»ÔÀí¼°ÆäÓ¦Óá¾ÀÍÉê°ÍºÕÖø,ÕŽðìä,Áδº·¢,¸µµÂé¦,ÀîÜ½ÈØÒë,³ÂÁÒÃñУ¡¿
C486¡¢Ì«ÑôÄܵçÔ´¡¾Ö£ÊØè¡,Óà½Ü¡¿
C487¡¢îÑ·Ö×å·°·Ö×å¸õ·Ö×塾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ08¾í
C488¡¢Ì¼¹èÕà·Ö×塾ºÂÈóÈØ,·½ÎýÒå,Å¥Éٳ塿¡¾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ03¾í
C489¡¢ÌØÊ⺯Êý¸ÅÂÛ¡¾ÍõÖñϪ,¹ù¶ØÈÊ¡¿
C490¡¢ÌØÊ⺯Êý¸ÅÂÛ¡¾ÍõÖñϪ,¹ù¶ØÈÊ¡¿2000Äê°æ¡¾±±¾©´óѧÎïÀíѧ´ÔÊé¡¿
C491¡¢ÌØÊ⺯Êý¸ÅÂÛ¡¾ÍõÖñϪ,¹ù¶ØÈÊ¡¿¿ÆÑ§³ö°æÉç1965
C492¡¢ÌìÌåÎïÀíѧ¡¾Àî×Úΰ,ФÐË»ª¡¿
C493¡¢ÌìÌåÎïÀíÖеķøÉä»úÖÆ(µÚ¶þ°æ)¡¾ÓȾþºº¡¿
C494¡¢Ìú´ÅѧÉÏ¡¾´÷µÀÉú,Ç®À¥Ã÷¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C495¡¢Ìú´ÅѧÏ¡¾ÁÎÉܱò¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C496¡¢Ìú´ÅѧÖС¾ÖÓÎ͍¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C497¡¢ÌúµçÌåÎïÀíѧ¡¾ÖÓάÁÒ¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C498¡¢Í³¼ÆÁ¦Ñ§¡¾ÅÝÀûÎïÀíѧ½²Òå¡¿4
C499¡¢Í³¼ÆÁ¦Ñ§¡¾ÀîÕþµÀ¡¿
C500¡¢Í³¼ÆÄÜÁ¿·ÖÎöÔÀí¼°ÆäÓ¦Óá¾Ò¦µÂÔ´,ÍõÆäÕþ¡¿
C501¡¢Í³¼ÆÎïÀíI¡¾ÀʵÀÀíÂÛÎïÀí½Ì³Ì¡¿¾í05
C502¡¢Í³¼ÆÎïÀíII(Äý¾Û̬ÀíÂÛ)¡¾ÀʵÀÀíÂÛÎïÀí½Ì³Ì¡¿¾í09
C503¡¢Í³¼ÆÎïÀíÏÖ´ú½Ì³Ì(ÉÏ)¡¾À׿ˡ¿
C504¡¢Í³¼ÆÎïÀíÏÖ´ú½Ì³Ì(ÏÂ)¡¾À׿ˡ¿
C505¡¢Í³¼ÆÎïÀíѧ¡¾Èð·òÖø,ÖÜÊÀÑ«µÈÒë¡¿¡¾²®¿ËÀûÎïÀíѧ½Ì³Ì¡¿¾í5
C506¡¢Í³¼ÆÎïÀíѧ¡¾ËÕÈêﬡ¿¡¾ÀíÂÛÎïÀíѧ»ù´¡½Ì³Ì´ÔÊé¡¿
C507¡¢Í³¼ÆÎïÀíѧµ¼ÂÛ¡¾ÍõÖñϪ¡¿
C508¡¢Í³¼ÆÎïÀíѧ½øÕ¹¡¾ºÂ°ØÁֵȡ¿
C509¡¢Í³¼ÆÎïÀíѧÖеÄÁ¿×Ó³¡ÂÛ·½·¨¡¾°¢²¼Àï¿ÆË÷·ò,¸ê¶û¿É·ò,¼ÓÂåÐÁ˹»ùÖø,ºÂ°ØÁÖÒë¡¿
C510¡¢Í³¼ÆÎïÀíÖеÄÃÉÌØ¿¨ÂÞÄ£Äâ·½·¨¡¾±öµÂ,ºÕ¶ûÂüÖø,ÇØ¿Ë³ÏÒë¡¿
C511¡¢Í³¼ÆÑ§(µÚÈý°æ)¡¾Ë¹Æ¤¸ñ¶û,˹µÙ·ÒË¹Öø;Ñî¼ÍÁú,¶ÅÐãÀö,Ò¦ÞÈ,ÕÔæÂæÂ,ÁºÖ¾±òÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿02
C512¡¢Í³¼ÆÑ§ÔÀí(Éϲá)¡ª¡ªÃèÊöÐÔͳ¼ÆÑ§Óë¸ÅÂÊ¡¾S.²®¶÷˹̹,R.²®¶÷Ë¹Ì¹Öø,Ê·µÀ¼ÃÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿08
C513¡¢Í³¼ÆÑ§ÔÀí(ϲá)¡ª¡ªÍƶÏÐÔͳ¼ÆÑ§¡¾S.²®¶÷˹̹,R.²®¶÷Ë¹Ì¹Öø,Ê·µÀ¼ÃÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿08
C514¡¢Í¼½âÎïÀí¡¾»ô¶ûÖø,ΤΤÒë¡¿
C515¡¢Î¢²¨¼¼Êõ»ù´¡¡¾Áγж÷¡¿
C516¡¢Î¢²¨ÔÀíÓë¼¼Êõ¡¾Àî´óÄê¡¿
C517¡¢Î¢·Ö·½³Ì(µÚ¶þ°æ)¡¾²¼ÀÊÉÖø,Áõ¼ÎŸj,ÂÞÈðÑÞ,ÐìÁèÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿07
C518¡¢Î¢·Ö¼¸ºÎѧ¼°ÆäÔÚÎïÀíѧÖеÄÓ¦Óá¾Â½Æôﬡ¿
C519¡¢Î¢»ý·Ö¡¾Ê©Æ¤¸ñ¶ûÖø,Ê©½¨±ø,Öì׿Óî,·ëÓñÓ¢,ËïÔ½ãüÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿09
C520¡¢Î¢ÉúÎïѧ¡¾°¢¿¦ÄªÖø,ÁÖÖÉÀ¼,ËÎâùÁá,ºéÁú,ÁÖο´ÈÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿36
C521¡¢Î´À´50Ä꡾²¼Âå¿ËÂüÖø,ÀîÓ¾Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ3¼]
C522¡¢ÎÄÎïÓëÎïÀí¡¾´÷Äî׿¡¿¡¾ÖйúÎÄÎïÓë¿ÆÑ§´ÔÊé¡¿
C523¡¢Îȶ¨Í¬Î»ËØ»¯Ñ§¡¾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ17¾í
C524¡¢ÎÒÃÇΪʲôÉú²¡¡ª¡ª´ï¶ûÎÄҽѧµÄпÆÑ§¡¾Äá˹,ÍþÁ®Ë¹Öø,Ò×·²,Óí¿íƽÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ2¼]
C525¡¢ÎÞ»ú½á¹¹»¯Ñ§¡¾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ11¾í
C526¡¢ÎÞ»úÎïÏàÆ½ºâ¡¢·ÇÕû±È»¯ºÏÎÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ14¾í
C527¡¢ÎÞÏߵ粨´«²¥ÀíÂÛ¼°ÆäÓ¦Óá¾ÂÀ±£Î¬,ÍõÕêËÉ¡¿
C528¡¢ÎïÀí¶¨ÂɵÄÌØÐÔ¡¾·¶¶÷Âü(Feynman)Öø¡¿
C529¡¢ÎïÀí¹âѧÀíÂÛÓëϰÌ⡾ÁºîýÍ¢¡¿
C530¡¢ÎïÀíÁ¦Ñ§½²Ò塾Ǯѧɡ¿
C531¡¢ÎïÀí˼άÂÛ¡¾ÑÖ½ðîìÖ÷±à,ÌïÊÀÀ¥,ºúÎÀÆ½Öø¡¿¡¾Ñ§¿ÆÏÖ´ú½ÌÓýÀíÂÛÊéϵ¡¿
C532¡¢ÎïÀíÌìÎÄÑ§Ç°ÑØ¡¾»ôÒÁ¶û,ÄÉÀï¿¨Öø,ºÎÏãÌÎ,ÕÔ¾ýÁÁÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ4¼]
C533¡¢ÎïÀíѧ(µÚ¶þ°æ)ÉÏ¾í¡¾Áõ¿ËÕÜ¡¿
C534¡¢ÎïÀíѧ(µÚ¶þ°æ)ÏÂ¾í¡¾Áõ¿ËÕÜ¡¿
C535¡¢ÎïÀíѧµÄ·½Ïò¡¾P.A.M.µÒÀ¿ËÖø,ÕÅÒË×Ú,¹ùÓ¦»ÀÒë¡¿
C536¡¢ÎïÀíѧµÄ½ø»¯¡¾°®Òò˹̹,Ó¢·Ñ¶ûµÂÖø,ÖÜÕØÍþÒë¡¿
C537¡¢ÎïÀíѧ»ù´¡¡¾±È¿Ë,ºÕ¿ËÌØÖø,ÐùÖ²»ªÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿18
C538¡¢ÎïÀíѧ¼ÒÓÃ΢·Ö¼¸ºÎ¡¾ºî²®Ôª,ºî²®Óî¡¿
C539¡¢ÎïÀíѧÀíÂÛµÄÄ¿µÄºÍ½á¹¹¡¾Æ¤°£¶û?µÏ°º¡¿
C540¡¢ÎïÀíѧÄÑÌ⼯ÝÍ(¸½»ù±¾Ìâ¡¢¸½Ïê½â)Éϲ᡾³Â±üǬ,ºúÍûÓê,ÊæÓ×Éú,½ðÖÙ»Ô¡¿
C541¡¢ÎïÀíѧÄÑÌ⼯ÝÍ(¸½»ù±¾Ìâ¡¢¸½Ïê½â)ϲ᡾³Â±üǬ,ºúÍûÓê,ÊæÓ×Éú,½ðÖÙ»Ô¡¿
C542¡¢ÎïÀíѧÄÑÌ⼯ÝÍ(Ôö¶©±¾)¡¾ÊæÓ×Éú,ºúÍûÓê,³Â±üǬ¡¿
C543¡¢ÎïÀíѧϰÌ⼯(µÚ1·Ö²á) -±±´ó£¬¿Æ´ó
C544¡¢ÎïÀíѧϰÌ⼯(µÚ2·Ö²á) -±±´ó£¬¿Æ´ó
C545¡¢ÎïÀíѧϰÌ⼯(µÚ3·Ö²á) -±±´ó£¬¿Æ´ó
C546¡¢ÎïÀíѧÔÖøÑ¡¶Á¡¾Íþ•¸¥•Âí¼ª¡¿
C547¡¢ÎïÀíѧÖеÄȺÂÛ(Éϲá)¡¾ÌÕÈ𱦡¿
C548¡¢ÎïÀíѧÖеÄȺÂÛ(ϲá)¡¾ÌÕÈ𱦡¿
C549¡¢ÎïÀíѧÖеÄȺÂÛ¡¾ÂíÖÐæë¡¿
C550¡¢ÎïÀíѧÖеÄÊýѧ·½·¨¡¾ÀîÕþµÀÖø,ÎâË³ÌÆÒë¡¿
C551¡¢ÎïÀíѧÖеÄÊýѧ·½·¨µÚ1¾í¡¾°ÝÂØ,¸»ÀÕÖø,ÐܼҾ¼,²ÜСƽÒë¡¿
C552¡¢ÎïÀíѧÖеÄÊýѧ·½·¨µÚ2¾í¡¾°ÝÂØ,¸»ÀÕÖø,ÐܼҾ¼,²ÜСƽÒë¡¿
C553¡¢ÎïÀíÓëÍ·ÄÔÏàÓöµÄµØ·½¡¾K.C.ColeÖø,ÇðºêÒåÒë¡¿
C554¡¢ÎïÀíÖеÄÊýѧ¡¾Â³±õ¡¿
C555¡¢ÎïÖʽṹ(µÚ¶þ°æ)¡¾Ðì¹âÏÜ,ÍõÏéÔÆ¡¿
C556¡¢Ï¡ÓÐÆøÌå¡¢Çâ¡¢¼î½ðÊô¡¾·ë¹âÎõ,»ÆÏêÓñ,ÉêãúÎÄ,ÕÅö¦»ª,Áõñ´ÂÚ,Èεºñ¡¿¡¾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ01¾í
C557¡¢Ï¸°ûÉúÃüµÄÀñÔÞ¡ª¡ªÒ»¸öÉúÎïѧ¹Û²ìÕßµÄÊּǡ¾ÍÐÂíË¹Öø,ÀîÉÜÃ÷Òë,ÐìÅàУ¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ1¼]2
C558¡¢ÏȽø°ëµ¼Ìå²ÄÁÏÐÔÄÜÓëÊý¾ÝÊֲ᡾Levinshtein,Rumyantsev,ShurÖø,ÑîÊ÷ÈË,Òó¾°Ö¾Òë¡¿
C559¡¢ÏÖ´ú°ëµ¼ÌåÆ÷¼þÎïÀí¡¾Ê©Ãô¡¿
C560¡¢ÏÖ´ú°ëµ¼ÌåÎïÀí¡¾ÏĽ¨°×¡¿¡¾±±¾©´óѧÎïÀíѧ´ÔÊé¡¿
C561¡¢ÏÖ´ú¹âѧʵÑ顾ÀîÔÊÖÐ,¶Ð¢Òå,ÍõÇåÔ¡¿
C562¡¢ÏÖ´úÁ¿×Ó³¡ÂÛµ¼Òý¡¾ôÃÖÒÆ½¡¿
C563¡¢ÏÖ´úÎïÀíѧ²Î¿¼×ÊÁÏ.µÚ1¼¯
C564¡¢ÏÖ´úÎïÀíѧ²Î¿¼×ÊÁÏ.µÚ2¼¯
C565¡¢ÏÖ´úÎïÀíѧ²Î¿¼×ÊÁÏ.µÚ3¼¯
C566¡¢ÏÖ´úÎïÀíѧ²Î¿¼×ÊÁÏ.µÚ4¼¯
C567¡¢ÏÖ´úÎïÀíѧ²Î¿¼×ÊÁÏ.µÚ5¼¯
C568¡¢ÏÖ´úÎïÀíѧ²Î¿¼×ÊÁÏ.µÚ6¼¯
C569¡¢Ïà¶ÔÂÛ¡¾ÅÝÀûÖø,ÁèµÂºé,ÖÜÍòÉúÒë¡¿
C570¡¢Ïà¶ÔÂÛ¡¾Îâ´óéà¡¿¡¾Îâ´óéàÀíÂÛÎïÀí¡¿µÚ4²á
C571¡¢Ïà¶ÔÂÛµÄÒâÒ塾°®ÒòË¹Ì¹Öø,Àîå°Òë¡¿
C572¡¢Ïà¶ÔÂÛÁ¿×Ó³¡¡¾±ÈÔ¼¿Ï,µÂÀ×¶ûÖø,Íô¿ËÁÖµÈÒë¡¿
C573¡¢Ïà¶ÔÂÛÁ¿×ÓÁ¦Ñ§¡¾±ÈÔ¼¿Ï,µÂÀ×¶ûÖø,¼ÍÕÜÈñ,ËÕ´ó´ºÒë¡¿
C574¡¢Ïà¸É¹âѧÔÀí¼°Ó¦Óá¾Áõ˼Ãô,Ðí¾©¾ü,¹ùÈå¡¿
C575¡¢ÐÂÁ¿×ÓÊÀ½ç¡¾ºÚ,ÎÖ¶ûÌØË¹Öø,À×ÞȰ²Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ4¼]
C576¡¢ÐźÅÓëϵͳ¡¾Hwei P. HsuÖø,ÂæÀö,ºú½¡,ÀîÕÜÓ¢Òë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿35
C577¡¢Ñ¦¶¨Ú̵Ä裺Ðþ°ÂµÄÁ¿×ÓÊÀ½ç¡¾ÂÞÌØÀ³ÒòÖø,ÓὨƽÒë¡¿
C578¡¢Ñ§Êõ½»Á÷Ó¢Óï½Ì³Ì¡¾´Ó´Ô,ÀîÓ½Ñà¡¿
C579¡¢ÑÇÔ×ÓÁ£×ӵķ¢ÏÖ¡¾Î²®¸ñÖø,ÑÚþ,ФÃ÷Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ4¼]
C580¡¢Ñ°Í¿ËË¹ÌØ·½³Ì¡¾¸ðÄ«ÁÖ,Ѧ¿µ¡¿¡¾ÎïÀíÑ§Ç°ÑØ´ÔÊé¡¿
C581¡¢ÑõÁòÎø·Ö×塾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ05¾í
C582¡¢Òº¾§ÎïÀíѧ¡¾Ð»Ø¹Õ¡¿¡¾Äý¾Û̬ÎïÀíѧ´ÔÊé¡¿
C583¡¢ÒôÀÖÖеÄÎïÀí¡¾¹¨ÕòÐÛ,¶Ü°¡¿
C584¡¢ÒýÁ¦ÀíÂÛºÍÒýÁ¦Ð§Ó¦¡¾ÍõÓÀ¾Ã,ÌÆÖÇÃ÷¡¿
C585¡¢ÒýÁ¦ÂÛºÍÓîÖæÂÛ£º¹ãÒåÏà¶ÔÂÛµÄÔÀíºÍÓ¦Óá¾Î²®¸ñÖø,×ÞÕñ¡,ÕÅÀúÄþµÈÒë¡¿
C586¡¢Ó¦Óõ¯ÐÔÁ¦Ñ§¡¾Íõ¹ð·¼¡¿
C587¡¢Ó¦ÓüÆËãÁ÷ÌåÁ¦Ñ§¡¾Öì×ÔÇ¿¡¿
C588¡¢Ó¢Óï¿Æ¼¼ÂÛÎÄд×÷Óë·¢±í¡¾ÖÓËÆè¯Ö÷±à¡¿
C589¡¢Óлú»¯Ñ§Ï°Ì⾫½â¡¾Âõ˹Àû¿Ë,ÄῨķ½ðµÈÖø,ÙÜÔ¶±óµÈÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿24
C590¡¢Óлú½ðÊô»¯ºÏÎï ÉúÎïÔª»ú»¯Ñ§¡¾ÎÞ»ú»¯Ñ§´ÔÊé¡¿µÚ15¾í
C591¡¢ÓÐÏÞÔª·ÖÎö¡¾²¼²éÄÏÖø,¶Îľü,лΰËÉÒë¡¿¡¾È«ÃÀ¾µäѧϰָµ¼ÏµÁС¿11
C592¡¢ÓîÖæµÄ´´Éú¡¾·½ÀøÖ®,ÀîÊçæµ¡¿¡¾ÎïÀíѧ»ù´¡ÖªÊ¶´ÔÊé¡¿
C593¡¢ÓîÖæµÄÇÙÏÒ¡¾¸ñÁÖÖø,ÀîÓ¾Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ3¼]
C594¡¢ÓîÖæÎª¼Ò¡¾¿¼·òÂüÖø,ÀîÉÜÃ÷,Ðì±òÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ3¼]
C595¡¢ÓîÖæÐÂÊÓÒ°¡¾Æ¤ÌØÉ,²¼À¼ÌØÖø,ºúÖÐΪ,ÁõÑ×Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ4¼]
C596¡¢Ô×ÓºËÀíÂÛ(ºË·´Ó¦²¿·Ö)¡¾Ð칪ñî,Íõ˳½ð¡¿
C597¡¢Ô×ÓºËÎïÀí¡¾Â¬Ï£Í¥¡¿
C598¡¢Ô×ÓÎïÀíѧ¡¢ºËÓëÁ£×ÓÎïÀíѧ¡¾ÃÀ¹úÎïÀíÊÔÌâÓë½â´ð¡¿µÚ4¾í
C599¡¢Ô×ÓÓëÔ×ÓºËÎïÀíѧϰÌ⼯¡¾Ìï¿¡ºãÒë¡¿
C600¡¢Ô×ÓÖеÄÓÄÁ顾´÷ά˹,²¼Àʺϱà,Ò×ÐĽàÒë,ºé¶¨¹úУ¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ1¼]1
C601¡¢Ô²Ó³É䡾³Âʽ¸Õ¡¿¡¾·ÇÏßÐÔ¿ÆÑ§´ÔÊé¡¿
C602¡¢Ô˶¯Îȶ¨ÐÔÀíÂÛÓëÓ¦Óá¾ÇØÔªÑ«,ÍõĽÇï,ÍõÁª¡¿
C603¡¢Õñµ´µç·ʵÓÃÉè¼ÆÊֲ᡾¶Î¾ÅÖÝ¡¿
C604¡¢Õñ¶¯Á¦Ñ§¡¾ÁõÑÓÖù,³ÂÎÄÁ¼,³ÂÁ¢Èº¡¿
C605¡¢Õñ¶¯ÓëÉù¡¾Äª¶ûË¹Öø,ÄϾ©´óѧ¡¶Õñ¶¯ÓëÉù¡··Òë×éÒë¡¿
C606¡¢Öǻ۵͝Á¦¡¾Á¢¶÷¹þµÂÖø,Áõ¾§,ФÃÀÁá,ÑàÀöÇÚÒë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ3¼]
C607¡¢Öйú´ó°Ù¿ÆÈ«Êé¡¶Á¦Ñ§¡·
C608¡¢Öйú¹Å´úÎïÀíѧ¡¾´÷Äî׿,ÕÅεºÓ¡¿¡¾ÖйúÎÄ»¯Ê·ÖªÊ¶´ÔÊé¡¿
C609¡¢ÖÕ¼«ÀíÂÛÖ®ÃΡ¾Î²®¸ñÖø,ÀîÓ¾Òë¡¿¡¾µÚÒ»ÍÆ¶¯´ÔÊé¡¿[µÚ3¼]
C610¡¢×ÔÈ»Óë¹ÅÏ£À°¡¾Ñ¦¶¨ÚÌ¡¿¡¾Åµ±´¶û½±µÃÖ÷¿ÆÑ§´ÔÊé¡¿
C611¡¢×ÔÈ»ÕÜѧ֮ÊýѧÔÀí¡¾Å£¶ÙÖø,Íõ¿ËµÏÒë,Ô¬½ÑóУ¡¿
C612¡¢×ÔÈ»ÕÜѧ֮ÊýѧÔÀíÓîÖæÌåϵ¡¾Å£¶ÙÖø,Íõ¿ËµÏÒë¡¿
C613¡¢×ÔÊÊÓ¦¹âѧÀíÂÛ¡¾ÖÜÈÊÖÒ,ÑÖ¼ªÏé¡¿
C614¡¢×ÔÓɵç×Ó¼¤¹â¡¾»ÝÖÓÎý,ÑîÕ𻪡¿
C615¡¢×ÔÓɵç×Ó¼¤¹âÆ÷¡¾ÂíЪ¶ûÖø,ÒüÔªÕÑÒë¡¿
C616¡¢×Ô×éÖ¯¸ÅÂÛ¡¾ÕÅÑå,Áֵº꡿£¬
E001¡¢A Chemist's Guide to Density Functional Theory(2nd ed)¡¾Koch,Holthausen¡¿
E002¡¢A College Text-Book of Physics(2nd Ed)¡¾Kimball¡¿
E003¡¢A Course in Modern Mathematical Physics - Groups, Hilbert Spaces and Differential Geometry¡¾P.Szekeres¡¿
E004¡¢A Dictionary of Science(5th Ed)
E005¡¢A First Course In General Relativity¡¾B.F.Schutz¡¿
E006¡¢A First Course in String Theory¡¾B.Zwiebach¡¿
E007¡¢A Guide to Monte Carlo Simulations in Statistical Physics(2nd Ed)¡¾Landau&Binder¡¿
E008¡¢A Guide to Physics Problems Part 1 - Mechanics, Relativity, and Electrodynamics¡¾S.Cahn,B.Nadgorny¡¿
E009¡¢A Guide to Physics Problems Part 2 - Thermodynamics, Statistical Physics, and Quantum Mechanics¡¾S.Cahn,G.Mahan,B.Nadgorny¡¿
E010¡¢A Guided Tour of Mathematical Physics¡¾Roel Snieder¡¿
E011¡¢A Heat Transfer Textbook(3rd Ed)¡¾John H. Lienhard IV, John H. Lienhard V¡¿v131
E012¡¢A Mathematical Introduction to Fluid Mechanics(3rd Ed)¡¾Chorin,Marsden¡¿
E013¡¢A Modern Course in Statistical Physics(2nd Ed)¡¾Reichl¡¿
E014¡¢A Modern Introduction to Particle Physics(2nd Ed)¡¾Fayyazuddin,Riazuddin¡¿
E015¡¢A New Kind of Science¡¾S.Wolfram¡¿²»ÇåÎú°æ
E016¡¢A Primer in Density Functional Theory¡¾C.Fiolhais,F.Nogueira,M.Marques¡¿
E017¡¢A Quantum Approach to Condensed Matter Physics¡¾Taylor,Heinonen¡¿
E018¡¢A Short Course in Quantum Information Theory: An Approach From Theoretical Physics¡¾Lajos Diosi¡¿
E019¡¢A Text Book of Practical Organic Chemistry(3rd Ed)¡¾Vogel¡¿
E020¡¢A treatise on electricity and magnetism, Vol I¡¾J.C.Maxwell¡¿
E021¡¢A treatise on electricity and magnetism, Vol II¡¾J.C.Maxwell¡¿
E022¡¢A Universe of Atoms, An Atom in the Universe¡¾Mark P. Silverman¡¿
E023¡¢ABC of Relativity(4th revised ed.)¡¾B.Russell¡¿
E024¡¢Absorption and Scattering of Light By Small Particles¡¾Bohren,Huffman¡¿
E025¡¢Accelerator Physics(2nd Ed)¡¾S.Y.Lee¡¿
E026¡¢Accretion Power in Astrophysics(3rd Ed)¡¾Frank,King,Raine¡¿
E027¡¢Acoustics¡¾L.Beranek¡¿
E028¡¢Advanced General Relativity¡¾J.Stewart¡¿
E029¡¢Advanced Quantum Mechanics(3rd Ed)¡¾Schwabl¡¿
E030¡¢Advanced Quantum Mechanics(4th Ed)¡¾F.Schwabl¡¿
E031¡¢Advanced Quantum Mechanics¡¾Sakurai¡¿
E032¡¢Advances in Amorphous Semiconductors¡¾J.Singh,K.Shimakawa¡¿¡¾Advances in condensed matter science¡¿Vol. 5
E033¡¢Advances in Nuclear Physics Vol. 23¡¾J.W.Negele,E.Vogt¡¿
E034¡¢An Advanced Course in Modern Nuclear Physics¡¾J.Arias,M.Lozano¡¿
E035¡¢An Introduction to Black Holes, Information, and the String Theory Revolution-The Holographic Universe¡¾Susskind,Lindesay¡¿
E036¡¢An Introduction to Chaos in Enequiliium Statistical Mechanics¡¾J.R.Dorfman¡¿
E037¡¢An Introduction to Computational Physics(2nd Ed)¡¾Tao Pang¡¿
E038¡¢An Introduction to Computer Simulation¡¾M.M.Woolfson,G.J.Pert¡¿
E039¡¢An Introduction to Fluid Dynamics¡¾G.K.Batchelor¡¿
E040¡¢An Introduction to Mathematical Cosmology(2nd Ed)¡¾Islam¡¿
E041¡¢An Introduction to Modern Cosmology(2nd Ed)¡¾Andrew Liddle¡¿
E042¡¢An Introduction to Nuclear Physics(2nd Ed)¡¾Cottingham,Greenwood¡¿
E043¡¢An Introduction to Quantum Field Theory¡¾Peskin,Schroesder¡¿
E044¡¢An Introduction to Stochastic Processes in Physics¡¾D.Lemons¡¿
E045¡¢An Introduction to the Science of Cosmology¡¾D.Raine,T.Thomas¡¿
E046¡¢Analysis of Operators¡¾Reed,Simon¡¿¡¾Methods of Modern Mathematical Physics¡¿Vol. 4
E047¡¢Analytic Properties of Feynman Diagrams in Quantum Field Theory¡¾Todorov¡¿
E048¡¢Analytical Mechanics¡¾Hand,Finch¡¿
E049¡¢Angular Momentum Techniques in Quantum Mechanics¡¾V.Devanathan¡¿
E050¡¢Antenna Theory and Design¡¾Stutzman,Thiele¡¿
E051¡¢Applied Mathematical Methods in Theoretical Physics¡¾M.Masujima¡¿
E052¡¢Applied Quantum Mechanics¡¾A.F.J.Levi¡¿
E053¡¢Aspects of Symmetry: Selected Erice Lectures of Sidney Coleman¡¾Sidney Coleman¡¿
E054¡¢Astronomical Spectroscopy - An introduction to the Atomic nd Molecular Physics of Astronomical Spectra¡¾Jonathan Tennyson¡¿
E055¡¢Astronomy - Principles and Practice(4th Ed)¡¾A.E.Roy,D.Clarke¡¿
E056¡¢Astrophysical Concepts(4th Ed)¡¾Martin Harwit¡¿
E057¡¢Asymptotic Structure of Space-Time¡¾F.P.Esposito,L.Witten¡¿
E058¡¢Atmospheric Electrostatics¡¾L.Wahlin¡¿
E059¡¢Atomic and Electronic Structure of Solids¡¾E.Kaxiras¡¿
E060¡¢Atomic Force Microscopy/Scanning Tunneling Microscopy 3¡¾Cohen&Lightbody¡¿
E061¡¢Atomic Physics¡¾Christopher J. Foot¡¿
E062¡¢Atomic Spectroscopy - Introduction to the Theory of Hyperfine Structure¡¾Anatoli V. Andreev¡¿
E063¡¢Atomic Structure Theory¡¾Walter R. Johnson¡¿¡¾Lectures on Atomic Physics¡¿
E064¡¢Basic Notions of Condensed Matter Physics¡¾P.W.Anderson¡¿
E065¡¢Basic Theoretical Physics: A Concise Overview¡¾U.Krey,A.Owen¡¿
E066¡¢Bayesian Logical Data Analysis for the Physical Sciences - A Comparative Approach with Mathematica Support¡¾P.Gregory¡¿
E067¡¢Black Holes Wormholes and Time Machines¡¾Jim Al-Khalili¡¿
E068¡¢Black Holes¡¾Don Nardo¡¿
E069¡¢Bonding and Structure of Molecules and Solids¡¾D.G.Pettifor¡¿
E070¡¢Bose-Einstein Condensation in Dilute Gases¡¾C.J.Pethick,H.Smith¡¿
E071¡¢Building Blocks of Matter - A Supplement to the Macmillan Encyclopedia of Physics¡¾John S. Rigden¡¿
E072¡¢Calculus of Variations - With Applications to Physics and Engineering¡¾R.Weinstock¡¿
E073¡¢Canonical Problems in Scattering and Potential Theory, Part I - Canonical Structures in Potential Theory¡¾S.S.Vinogradov,P.D.Smith,E.D.Vinogradova¡¿
E074¡¢Cavitation and Bubble Dynamics¡¾C.E.Brennen¡¿
E075¡¢Cavity Quantum Electrodynamics - The Strange Theory of Light in a Box¡¾S.M.Dutra¡¿
E076¡¢Chance in Physics: Foundations and Perspectives¡¾J.Bricmont,D.D¨¹rr,M.C.Galavotti,G.Ghirardi,F.Petruccione,N.Zanghi¡¿
E077¡¢Chaos and Integrability in Nonlinear Dynamics: An Introduction¡¾M.Tabor¡¿
E078¡¢Chaos Theory Tamed¡¾Garnett P. Williams¡¿
E079¡¢Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems¡¾Steves,Maciejewski,Hendry¡¿
E080¡¢Characterization of Nanophase Materials¡¾ZhongLin Wang¡¿
E081¡¢Charged Particle Beams¡¾S.Humphries¡¿
E082¡¢Classical and Quantum Dynamics - From Classical Paths to Path Integrals(3rd Ed)¡¾W.Dittrich,M.Reuter¡¿
E083¡¢Classical and Quantum Mechanics of the Damped Harmonic Oscillator¡¾H.Dekker¡¿
E084¡¢Classical Dynamics of Particles and Systems(5th Ed)¡¾S.T.Thornton,J.B.Marion¡¿
E085¡¢Classical Electrodynamics¡¾Greiner¡¿¡¾Classical Theoretical Physics¡¿12
E086¡¢Classical Electrodynamics¡¾John David Jackson¡¿
E087¡¢Classical Mechanics - Point Particles and Relativity¡¾Greiner¡¿¡¾Classical Theoretical Physics¡¿10
E088¡¢Classical Mechanics - Systems of Particles and Hamiltonian Dynamics¡¾Greiner¡¿¡¾Classical Theoretical Physics¡¿11
E089¡¢Classical Mechanics(3rd Ed)¡¾Goldstein,Poole,Safko¡¿
E090¡¢Coherent Optics: Fundamentals and Applications(2nd Ed)¡¾W.Lauterborn,T.Kuzr¡¿
E091¡¢Composite Fermions - A Unified View of the Quantum Hall Regime¡¾O.Heinonen¡¿
E092¡¢Computational Electrodynamics - The Finite-Difference Time-Domain Method(2nd Ed)¡¾Taflove,Hagness¡¿
E093¡¢Computational Fluid Dynamics - Principles and Applications¡¾J.Blazek¡¿
E094¡¢Computational Fluid Dynamics¡¾T.Chung¡¿
E095¡¢Computational Fluid Mechanics and Heat Transfer(2nd Ed)¡¾Tannehill,Anderson,Pletcher¡¿
E096¡¢Computational Many-particle Physics¡¾H.Fehske,R.Schneider,A.Wei?e¡¿
E097¡¢Computational Methods for Fluid Dynamics(3rd Ed)¡¾J.Ferziger,M.Peric¡¿
E098¡¢Computer Algebra Recipes for Mathematical Physics¡¾Enns¡¿
E099¡¢Computer Simulation Methods in Theoretical Physics(2nd Ed)¡¾D.W.Heermann¡¿
E100¡¢Concepts in Solid(Lectures on the Theory of Solids)¡¾P.W.Anderson¡¿
E101¡¢Concepts of Highly Excited Electronic Systems¡¾Jamal Berakdar¡¿
E102¡¢Condensed Matter Physics¡¾M.P.Marder¡¿
E103¡¢Conformal Array Antenna Theory and Design¡¾Josefsson,Persson¡¿
E104¡¢Conformal Field Theory¡¾P.DiFrancesco,P.Mathieu,D.Senechal¡¿
E105¡¢Continuum Physics, Vol 4 - Polar and Nonlocal Field Theories¡¾A.C.Eringen¡¿
E106¡¢Correlation Spectroscopy of Surfaces, Thin Films, and Nanostructures¡¾Berakdar,Kirschner¡¿
E107¡¢Cosmological Inflation and Large-Scale Structure¡¾A.Liddle,D.Lyth¡¿
E108¡¢Cosmology - The Origin and Evolution of Cosmic Structure(2nd Ed)¡¾P.Coles,F.Lucchin¡¿
E109¡¢Decoherence and Entropy in Complex Systems¡¾H.T.Elze¡¿
E110¡¢Density Functional Theory: An Approach to the Quantum Many-Body Problem¡¾R.M.Dreizler,E.K.U.Gross¡¿
E111¡¢Density-Functional Theory of Atoms and Molecules¡¾R.G.Parr,W.Yang¡¿
E112¡¢Determinants and Their Applications in Mathematical Physics¡¾R.Vein,P.Dale¡¿
E113¡¢Dictionary of Geophysics, Astrophysics, and Astronomy¡¾Richard A. Matzner¡¿
E114¡¢Dictionary of Pure and Applied Physics¡¾D.Basu¡¿
E115¡¢Differential Equations of Mathematical Physics¡¾N.S.Koshlyakov,M.M.Smirnov,E.B.Gliner¡¿
E116¡¢Differential Topology and Quantum Field Theory¡¾C.Nash¡¿
E117¡¢Diffraction Grating Handbook(6th Ed)¡¾Christopher Palmer¡¿
E118¡¢Digital Signal Processing: A Computer Based Approach(2nd Ed)¡¾S.K.Mitra¡¿
E119¡¢Discrete-Time Signal Processing¡¾A.V.Oppenheim,R.W.Schafer¡¿
E120¡¢Dynamical Theory of Brownian Motion¡¾E.Nelson¡¿
E121¡¢Dynamics of Polymeric Liquids, Vol 1 - Fluid Mechanics(2nd Ed)¡¾R.B.Bird,R.C.Armstrong,O.Hassager¡¿
E122¡¢Elasticity - Theory, Applications, and Numerics¡¾Sadd¡¿
E123¡¢Electrodynamics and Classical Theory of Fields and Particles¡¾A.O.Barut¡¿
E124¡¢Electrodynamics of Continuous Media(2nd Ed)¡¾Landau,Lifshitz¡¿¡¾Course of Theoretical Physics¡¿08
E125¡¢Electrodynamics of Solids - Optical Properties of Electrons in Matter¡¾Dressel,Gruner¡¿
E126¡¢Electrodynamics of Solids Microwave Superconductivity¡¾Zhou¡¿
E127¡¢Electromagnetic Fields and Waves - Including Electric Circuits(3rd Ed)¡¾Lorrain,Corson,Lorrain¡¿
E128¡¢Electromagnetic Simulation Using the FDTD Method¡¾Sullivan¡¿
E129¡¢Electromagnetics¡¾Rothwell,Cloud¡¿
E130¡¢Electron Correlations in Molecules and Solids(3rd Ed)¡¾P.Fulde¡¿
E131¡¢Electron Energy Loss Spectroscopy¡¾Rik Brydson¡¿
E132¡¢Electronic and Optoelectronic Properties of Semiconductor Structures¡¾Singh¡¿
E133¡¢Electronic Quantum Transport in Mesoscopic Semiconductor Structures¡¾Thomas Ihn¡¿
E134¡¢Electronic Structure and Magneto-Optical Properties of Solids¡¾V.Antonov,B.Harmon,A.Yaresko¡¿
E135¡¢Electronic Structure and Physical Properties of Solids¡¾Hugues Dreysse¡¿
E136¡¢Electronic Structure: Basic Theory and Practical Methods¡¾R.M.Martin¡¿
E137¡¢Electro-Optics Handbook(2nd Ed)¡¾Waynant,Ediger¡¿
E138¡¢Elementary Excitations in Solids¡¾Birman,Sebenne,Wallis¡¿
E139¡¢Elementary Principles of Statistical Mechanics¡¾J.W.Gibbs¡¿
E140¡¢Elements for Physics - Quantities, Qualities and Intrinsic Theories¡¾A.Tarantola¡¿
E141¡¢Elements of Advanced Quantum Theory¡¾J.Ziman¡¿
E142¡¢Engineering Electronmagnetics(6th Ed)¡¾Hayt,Buck¡¿¹¤³Ìµç´Å³¡µÚ6°æ[ÑÏÖØÈ±Ò³]
E143¡¢Entropy and its Physical Meaning¡¾J.S.Dugdale¡¿
E144¡¢Equations of Mathematical Physics¡¾A.V.Bitsadze¡¿
E145¡¢Equilibrium and Nonequilibrium Statistical Mechanics¡¾Balescu¡¿
E146¡¢Eureka! Physics of Particles, Matter and the Universe¡¾Blin-Stoyle¡¿
E147¡¢Experimental Techniques in Low-Temperature Physics(3rd Ed)¡¾White¡¿
E148¡¢Femtosecond Laser Spectroscopy¡¾Peter Hannaford¡¿
E149¡¢Feynman and Computation: Exploring the Limits of Computers¡¾A.J.G.Hey¡¿
E150¡¢Feynman Lectures on Computation¡¾Feynman¡¿
E151¡¢Fiber Bragg Gratings¡¾R.Kashyap¡¿
E152¡¢Field Geophysics - The Geological Field Guide Series(3rd Ed)¡¾John Milsom¡¿
E153¡¢Field Quantization¡¾Greiner,Reinhardt¡¿¡¾Classical Theoretical Physics¡¿05
E154¡¢Field Theory, the Renormalization Group, and Critical Phenomena(2nd Ed)¡¾D.J.Amit¡¿
E155¡¢Finite Element Method for Electromagnetics - Antennas, Microwave Circuits, and Scattering Applications¡¾J.L.Volakis,A.Chatterjee,L.C.Kempel¡¿
E156¡¢Fluid Dynamics for Physicists¡¾T.E.Faber¡¿
E157¡¢Fluid Mechanics and the Environment Dynamical Approaches¡¾J.L.Lumley¡¿
E158¡¢Fluid Mechanics(2nd Ed)¡¾Landau,Lifshitz¡¿¡¾Course of Theoretical Physics¡¿06
E159¡¢Fluid Mechanics(2nd Ed)¡¾P.Kundu,I.Cohen¡¿
E160¡¢Fluid Mechanics(4th Ed)¡¾Frank M. White¡¿
E161¡¢Fluid Mechanics¡¾Williams¡¿¡¾Problem Solver¡¿No.15
E162¡¢Foundations of Solid Mechanics¡¾Fung¡¿
E163¡¢Foundations of Statistical Mechanics¡¾O.Penrose¡¿
E164¡¢Fourier Analysis, Self-Adjointness¡¾Reed,Simon¡¿¡¾Methods of Modern Mathematical Physics¡¿Vol. 2
E165¡¢Fourier Transforms in Spectroscopy¡¾J.Kauppinen¡¿
E166¡¢Fractional Statistics and Anyon Superconductivity¡¾Frank Wilczek¡¿
E167¡¢From Calculus to Chaos: An Introduction to Dynamics¡¾David Acheson¡¿
E168¡¢Frontiers in Surface Nanophotonics: Principles and Applications¡¾Andrews,Gaburro¡¿
E169¡¢Functional Analysis¡¾Reed,Simon¡¿¡¾Methods of Modern Mathematical Physics¡¿Vol. 1
E170¡¢Functional integration and quantum physics¡¾B.Simon¡¿
E171¡¢Fundamentals in Nuclear Physics: From Nuclear Structure to Cosmology¡¾Basdevant,Rich,Spiro¡¿
E172¡¢Fundamentals of Creep in Metals and Alloys¡¾M.E.Kassner,M.-T.Perez-Prado¡¿
E173¡¢Fundamentals of Gas Dynamics(2nd Ed)¡¾R.Zucker,O.Biblarz¡¿
E174¡¢Fundamentals of Light Sources and Lasers¡¾Mark Csele¡¿
E175¡¢Fundamentals of Optics(4th Ed)¡¾F.A.Jenkins,H.E.White¡¿
E176¡¢Fundamentals of Quantum Mechanics: For Solid State Electronics and Optics¡¾C.L.Tang¡¿
E177¡¢Fundamentals of Statistical and Thermal Physics¡¾F.Reif¡¿
E178¡¢Fundamentals of Statistical Mechanics¡¾Walecka¡¿
E179¡¢Fundamentals of the Finite Element Method for Heat and Fluid Flow¡¾Lewis,Nithiarasu,Seetharamu¡¿
E180¡¢Gas Dynamics¡¾Becker¡¿
E181¡¢Gauge Field Theories(2nd Ed)¡¾Stefan Pokorski¡¿
E182¡¢Gauge Fields in Condensed Matter Physics, Vol. I, Superflow and Vortex Lines, Disorder Fields, Phase Transitions¡¾H.Kleinert¡¿
E183¡¢Gauge Fields in Condensed Matter Physics, Vol. II, Stresses and Defects, Differential Geometry, Crystal Melting¡¾H.Kleinert¡¿
E184¡¢Gauge Fields, Knots and Gravity¡¾J.Baez,J.Muniain¡¿
E185¡¢Gauge Theories in Particle Physics(3rd Ed)Vol 1 From Relativistic Quantum Mechanics to QED¡¾I.Aitichison¡¿
E186¡¢Gauge Theory of Weak Interactions(3rd Ed)¡¾Greiner,Muller¡¿¡¾Classical Theoretical Physics¡¿09
E187¡¢General Relativity and Gravitation - 100 Years After the Birth of Albert Einstein Vol 1¡¾A.Held¡¿
E188¡¢General Relativity and Relativistic Astrophysics¡¾N.Straumann¡¿
E189¡¢General Relativity¡¾R.M.Wald¡¿
E190¡¢General Theory of Relativity¡¾C.W.Kilmister¡¿
E191¡¢General Theory of Relativity¡¾P.A.M.Dirac¡¿
E192¡¢Geometric Quantization and Quantum Mechanics¡¾J.Sniatycki¡¿
E193¡¢Geometry of Yang-Mills Fields¡¾M.F.Atiyah¡¿
E194¡¢Geometry, Topology and Physics¡¾M.Nakahara¡¿
E195¡¢Glassy Materials and Disordered Solids¡¾Kurt Binder, Walter Kob¡¿
E196¡¢Global Earth Physics¡¾T.Ahrens¡¿¡¾AGU Reference Shelf¡¿1
E197¡¢Granular Gas Dynamics¡¾T.Poschel,N.Brilliantov¡¿
E198¡¢Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity¡¾Weinberg¡¿
E199¡¢Gravitation and Gauge Symmetries¡¾M.Blagojevic¡¿
E200¡¢Gravitation: an introduction to current research¡¾L.Witten¡¿