| 查看: 562 | 回复: 1 | ||||
[求助]
求助,建立的蛋白模型如何进行评价 已有1人参与
|
| 请教各位师兄师姐,老师让对突变的酶进行同源建模,建模之后,应该如何进行评价呢 ,用什么专门的软件呢??? |
» 收录本帖的淘帖专辑推荐
生物信息学 |
» 猜你喜欢
筑牢营养安全线:以精准检测,护健康基石
已经有0人回复
推荐一些20种氨基酸检测的实际应用案例
已经有0人回复
化学工程及工业化学论文润色/翻译怎么收费?
已经有134人回复
不合理蛙科研实验中的趣事:实验器材的 “乌龙”
已经有0人回复
不合理蛙科研实验中的趣事:和实验材料的 “斗智斗勇”
已经有0人回复
蛋白质检测:精准分析,解锁生物分子的密码
已经有0人回复
不合理蛙科研实验之小鼠实验:严谨设计,解析生命机制的重要载体
已经有0人回复
不合理蛙科研实验之重金属检测:精准筛查,守护健康与环境的防线
已经有0人回复
不合理蛙科研实验之“蛙测重金属我背锅三千”
已经有0人回复
不合理蛙科研实验之“鼠逃三次我发三篇SCI”
已经有0人回复
» 本主题相关价值贴推荐,对您同样有帮助:
大家在做蛋白同源模拟的时候,如何把不同结构域的分别建模连接到一起?
已经有30人回复
求助!蛋白质同源建模,模板不是同工酶,而且相似性低于30%,下一步怎么办?
已经有12人回复
求助蛋白质三维建模
已经有11人回复
体外实验模型建立细胞选择和评价方法
已经有3人回复
高脂模型的建立 大鼠or小鼠
已经有18人回复
同源模型的建立
已经有8人回复
如何用MS建立表面、水、蛋白的模型
已经有4人回复
同源建模,希望建的蛋白质结构,N端和C端分别使用不同的蛋白模版,请教
已经有11人回复
蛋白分子建模 小分子化合物画图 酶与配体的分子模拟
已经有11人回复
请教大家,跨膜蛋白的同源建模,遇到了困难
已经有3人回复
求助Discovery Studio 或其他蛋白质建模软件 软件
已经有7人回复
【讨论】分子模拟还是同源建模
已经有16人回复
【求助】modeller同源建模结果选择
已经有10人回复
【求助】用什么软件可以建立细胞膜嵌套蛋白质体系模型
已经有10人回复
【求助】求助关于同源模建的问题
已经有5人回复
【推荐】973 蛋白质主要降解途径-细胞自噬的分子机制及功能
已经有9人回复
【求助】蛋白质建模没有同源模板怎么解决?
已经有11人回复
【讨论】同一蛋白质分成不同部分建模得到的结构如何生成一个结构?
已经有9人回复
编辑蛋白质三维模型的生物软件
已经有1人回复
【求助】关于蛋白质模型的一些基本概念
已经有9人回复
凌波丽
专家顾问 (知名作家)
-

专家经验: +218 - MolEPI: 44
- 应助: 397 (硕士)
- 贵宾: 0.044
- 金币: 2118.9
- 散金: 10
- 红花: 208
- 帖子: 5633
- 在线: 571.6小时
- 虫号: 1766465
- 注册: 2012-04-19
- 性别: MM
- 专业: 生物大分子结构与功能
- 管辖: 生物科学综合
【答案】应助回帖
★ ★
感谢参与,应助指数 +1
myprayer: 金币+2, 赠人玫瑰手有余香,分子生物期待你更多精彩。 2014-07-10 12:16:54
感谢参与,应助指数 +1
myprayer: 金币+2, 赠人玫瑰手有余香,分子生物期待你更多精彩。 2014-07-10 12:16:54
|
不是一两句话说得清楚,请见参考文献: 1.蛋白质结构预测实验指南 http://muchong.com/bbs/viewthread.php?tid=6363934&fpage=1&target=blank 2.Daniel John Rigden Edits, From Protein Structure to Function with Bioinformatics,Springer Science,2009, 下载:http://muchong.com/bbs/viewthread.php?tid=6382178&fpage=1&target=blank 非常感谢原作者!也感谢电子版制作者和首发者! Contents Section I Generating and Inferring Structures 1 Ab InitioProtein Structure Prediction................................................... 3 Jooyoung Lee, Sitao Wu, and Yang Zhang 1.1 Introduction ....................................................................................... 3 1.2 Energy Functions .............................................................................. 5 1.2.1 Physics-Based Energy Functions .......................................... 5 1.2.2 Knowledge-Based Energy Function Combined with Fragments ..................................................................... 9 1.3 Conformational Search Methods ...................................................... 13 1.3.1 Monte Carlo Simulations ...................................................... 14 1.3.2 Molecular Dynamics ............................................................. 15 1.3.3 Genetic Algorithm ................................................................ 15 1.3.4 Mathematical Optimization .................................................. 16 1.4 Model Selection ................................................................................ 16 1.4.1 Physics-Based Energy Function ........................................... 17 1.4.2 Knowledge-Based Energy Function ..................................... 17 1.4.3 Sequence-Structure Compatibility Function ......................... 18 1.4.4 Clustering of Decoy Structures ............................................. 19 1.5 Remarks and Discussions ................................................................. 19 2 Fold Recognition...................................................................................... 27 Lawrence A. Kelley 2.1 Introduction ....................................................................................... 27 2.1.1 The Importance of Blind Trials: The CASP Competition ........................................................ 28 2.1.2 Ab InitioStructure Prediction Versus Homology Modelling ............................................................ 28 2.1.3 The Limits of Fold Space ...................................................... 30 2.1.4 A Note on Terminology: ‘Threading’ and ‘Fold Recognition’ ......................................................... 31 2.2 Threading .......................................................................................... 31 ix 2.2.1 Knowledge-Based Potentials ................................................ 32 2.2.2 Finding an Alignment ........................................................... 34 2.2.3 Heuristics for Alignment ...................................................... 35 2.3 Remote Homology Detection Without Threading ............................ 38 2.3.1 Using Predicted Structural Features ..................................... 39 2.3.2 Sequence Profiles and Hidden Markov Models .................... 41 2.3.3 Fold Classification and Support Vector Machines ................ 43 2.3.4 Consensus Approaches ......................................................... 45 2.3.5 Traversing the Homology Network ...................................... 45 2.4 Alignment Accuracy, Model Quality and Statistical Significance ....................................................................................... 47 2.4.1 Algorithms for Alignment Generation and Assessment ..................................................................... 47 2.4.2 Estimation of Statistical Significance ................................... 48 2.5 Tools for Fold Recognition on the Web ............................................ 49 2.6 The Future ......................................................................................... 50 3 Comparative Protein Structure Modelling............................................ 57 András Fiser 3.1 Introduction ....................................................................................... 57 3.1.1 Structure Determines Function ............................................. 57 3.1.2 Sequences, Structures, Structural Genomics ........................ 58 3.1.3 Approaches to Protein Structure Prediction .......................... 58 3.2 Steps in Comparative Protein Structure Modelling .......................... 60 3.2.1 Searching for Structures Related to the Target Sequence .......................................................... 62 3.2.2 Selecting Templates .............................................................. 64 3.2.3 Sequence to Structure Alignment ......................................... 65 3.2.4 Model Building ..................................................................... 67 3.2.5 Model Evaluation .................................................................. 76 3.3 Performance of Comparative Modelling ........................................... 77 3.3.1 Accuracy of Methods ............................................................ 77 3.3.2 Errors in Comparative Models .............................................. 78 3.4 Applications of Comparative Modelling ........................................... 80 3.4.1 Modelling of Individual Proteins .......................................... 80 3.4.2 Comparative Modelling and the Protein Structure Initiative ................................................................ 80 3.5 Summary ........................................................................................... 81 4 Membrane Protein Structure Prediction............................................... 91 Timothy Nugent and David T. Jones 4.1 Introduction ....................................................................................... 91 4.2 Structural Classes .............................................................................. 92 x Contents 4.2.1 Alpha-Helical Bundles ......................................................... 92 4.2.2 Beta-Barrels .......................................................................... 92 4.3 Membrane Proteins Are Difficult to Crystallise ............................... 94 4.4 Databases .......................................................................................... 94 4.5 Multiple Sequence Alignments ......................................................... 96 4.6 Transmembrane Protein Topology Prediction .................................. 98 4.6.1 Alpha-Helical Proteins .......................................................... 98 4.6.2 Beta-Barrel Proteins .............................................................. 102 4.6.3 Whole Genome Analysis ...................................................... 102 4.6.4 Data Sets, Homology, Accuracy and Cross-Validation ............................................................. 103 4.7 3D Structure Prediction ..................................................................... 105 4.8 Future Developments ........................................................................ 107 5 Bioinformatics Approaches to the Structure and Function of Intrinsically Disordered Proteins............................... 113 Peter Tompa 5.1 The Concept of Protein Disorder ...................................................... 113 5.2 Sequence Features of IDPs ............................................................... 115 5.2.1 The Unusual Amino Acid Composition of IDPs ............................................................ 115 5.2.2 Sequence Patterns of IDPs .................................................... 115 5.2.3 Low Sequence Complexity and Disorder ............................. 116 5.3 Prediction of Disorder ....................................................................... 116 5.3.1 Prediction of Low-Complexity Regions ............................... 116 5.3.2 Charge-Hydropathy Plot ....................................................... 117 5.3.3 Propensity-Based Predictors ................................................. 117 5.3.4 Predictors Based on the Lack of Secondary Structure .......................................................... 118 5.3.5 Machine Learning Algorithms .............................................. 119 5.3.6 Prediction Based on Contact Potentials ................................ 120 5.3.7 A Reduced Alphabet Suffices to Predict Disorder ................................................................ 121 5.3.8 Comparison of Disorder Prediction Methods ....................... 122 5.4 Functional Classification of IDPs ..................................................... 122 5.4.1 Gene Ontology-Based Functional Classification of IDPs ........................................................... 122 5.4.2 Classification of IDPs Based on Their Mechanism of Action ............................................. 123 5.4.3 Function-Related Structural Elements in IDPs ..................... 126 5.5 Prediction of the Function of IDPs ................................................... 128 5.5.1 Correlation of Disorder Pattern and Function ....................... 128 5.5.2 Predicting Short Recognition Motifs in IDRs ....................... 128 5.5.3 Prediction of MoRFs ............................................................. 129 Contents xi 5.5.4 Combination of Information on Sequence and Disorder: Phosphorylation Sites and CaM Binding Motifs ...................................................... 131 5.5.5 Flavours of Disorder ............................................................. 131 5.6 Limitations of IDP Function Prediction ............................................ 132 5.6.1 Rapid Evolution of IDPs ....................................................... 132 5.6.2 Sequence Independence of Function and Fuzziness ........................................................................ 133 5.6.3 Good News: Conservation and Disorder .............................. 134 5.7 Conclusions ....................................................................................... 135 Section II From Structures to Functions 6 Function Diversity Within Folds and Superfamilies............................. 143 Benoit H. Dessailly and Christine A. Orengo 6.1 Defining Function ............................................................................. 143 6.2 From Fold to Function ...................................................................... 145 6.2.1 Definition of a Fold ............................................................... 145 6.2.2 Prediction of Function Using Fold Relationships ......................................................................... 148 6.3 Function Diversity Between Homologous Proteins .......................... 151 6.3.1 Definitions ............................................................................. 151 6.3.2 Evolution of Protein Superfamilies ....................................... 152 6.3.3 Function Divergence During Protein Evolution ................... 154 6.4 Conclusion ........................................................................................ 162 7 Predicting Protein Function from Surface Properties.......................... 167 Nicholas J. Burgoyne and Richard M. Jackson 7.1 Surface Descriptions ......................................................................... 167 7.1.1 The van der Waals Surface .................................................... 167 7.1.2 Molecular Surface (Solvent Excluded Surface) .................... 168 7.1.3 The Solvent Accessible Surface ............................................ 168 7.2 Surface Properties ............................................................................. 169 7.2.1 Hydrophobicity ..................................................................... 169 7.2.2 Electrostatics Properties ........................................................ 170 7.2.3 Surface Conservation ............................................................ 171 7.3 Function Predictions Using Surface Properties ................................ 171 7.3.1 Hydrophobic Surface ............................................................ 172 7.3.2 Electrostatic Surface ............................................................. 172 7.3.3 Surface Conservation ............................................................ 173 7.3.4 Combining Surface Properties for Function Prediction ......................................................... 174 7.4 Protein-Ligand Interactions .............................................................. 174 7.4.1 Properties of Protein-Ligand Interactions ............................. 174 xii Contents 7.4.2 Predicting Binding Site Locations ........................................ 175 7.4.3 Predictions of Druggability ................................................... 178 7.4.4 Annotation of Ligand Binding Sites ..................................... 178 7.5 Protein-Protein Interfaces ................................................................. 180 7.5.1 Properties of Protein-Protein Interfaces ................................ 180 7.5.2 Hot-Spot Regions in Protein Interfaces ................................ 181 7.5.3 Predictions of Interface Location .......................................... 182 7.6 Summary ........................................................................................... 184 8 3D Motifs................................................................................................... 187 Elaine C. Meng, Benjamin J. Polacco, and Patricia C. Babbitt 8.1 Background and Significance ........................................................... 188 8.1.1 What Is Function? ................................................................. 189 8.1.2 Three-Dimensional Motifs: Definition and Scope .............................................................................. 190 8.2 Overview of Methods ........................................................................ 190 8.2.1 Motif Discovery .................................................................... 190 8.2.2 Motif Description and Matching ........................................... 191 8.2.3 Interpretation of Results ........................................................ 193 8.3 Specific Methods ............................................................................... 196 8.3.1 User-Defined Motifs ............................................................. 197 8.3.2 Motif Discovery .................................................................... 201 8.4 Related Methods ............................................................................... 208 8.4.1 Hybrid (Point-Surface) Descriptions .................................... 208 8.4.2 Single-Point-Centred Descriptions ....................................... 208 8.5 Docking for Functional Annotation .................................................. 210 8.6 Discussion ......................................................................................... 212 8.7 Conclusions ....................................................................................... 212 9 Protein Dynamics: From Structure to Function................................... 217 Marcus B. Kubitzki, Bert L. de Groot, and Daniel Seeliger 9.1 Molecular Dynamics Simulations ..................................................... 217 9.1.1 Principles and Approximations ............................................. 218 9.1.2 Applications .......................................................................... 220 9.1.3 Limitations – Enhanced Sampling Algorithms ............................................................................ 226 9.2 Principal Component Analysis ......................................................... 230 9.3 Collective Coordinate Sampling Algorithms .................................... 233 9.3.1 Essential Dynamics ............................................................... 233 9.3.2 TEE-REX .............................................................................. 234 9.4 Methods for Functional Mode Prediction ......................................... 237 9.4.1 Normal Mode Analysis ......................................................... 237 Contents xiii 9.4.2 Elastic Network Models .................................................. 238 9.4.3 CONCOORD .................................................................. 239 9.5 Summary and Outlook .................................................................. 242 10 Integrated Servers for Structure-Informed Function Prediction............................................................................... 251 Roman A. Laskowski 10.1 Introduction ................................................................................... 251 10.1.1 The Problem of Predicting Function from Structure ................................................................. 252 10.1.2 Structure-Function Prediction Methods .......................................................................... 253 10.2 ProKnow ....................................................................................... 254 10.2.1 Fold Matching ................................................................. 254 10.2.2 3D Motifs ........................................................................ 256 10.2.3 Sequence Homology ....................................................... 257 10.2.4 Sequence Motifs ............................................................. 257 10.2.5 Protein Interactions ......................................................... 258 10.2.6 Combining the Predictions .............................................. 258 10.2.7 Prediction Success .......................................................... 258 10.3 ProFunc ......................................................................................... 259 10.3.1 ProFunc’s Structure-Based Methods .............................. 259 10.3.2 Assessment of the Structural Methods ............................ 267 10.4 Conclusion .................................................................................... 269 11 Case Studies: Function Predictions of Structural Genomics Results................................................................................... 273 James D. Watson and Janet M. Thornton 11.1 Introduction ................................................................................... 273 11.2 Large Scale Function Prediction Case Studies .................................................................................. 275 11.3 Some Specific Examples ............................................................... 281 11.4 Community Annotation ................................................................ 287 11.5 Conclusions ................................................................................... 288 12 Prediction of Protein Function from Theoretical Models................................................................................. 293 Iwona A. Cymerman, Daniel J. Rigden, and Janusz M. Bujnicki 12.1 Background ................................................................................... 293 12.2 Protein Models as a Community Resource ................................... 295 12.2.1 Model Quality ................................................................. 296 12.2.2 Databases of Models ....................................................... 297 xiv Contents 12.3 Accuracy and Added Value of Model-Derived Properties ...................................................................................... 298 12.3.1 Implementation ............................................................... 300 12.4 Practical Application ..................................................................... 302 12.4.1 Plasticity of Catalytic Site Residues ............................... 302 12.4.2 Mutation Mapping .......................................................... 304 12.4.3 Protein Complexes .......................................................... 305 12.4.4 Function Predictions from Template-Free Models .................................................... 306 12.4.5 Prediction of Ligand Specificity ..................................... 309 12.4.6 Structure Modelling of Alternatively Spliced Isoforms ............................................................. 310 12.4.7 From Broad Function to Molecular Details .................... 312 12.5 What Next? ................................................................................... 314 Index................................................................................................................. 319 |
2楼2014-07-09 21:24:14













回复此楼