24小时热门版块排行榜    

查看: 1354  |  回复: 8

tigou

木虫 (正式写手)

[求助] 在集合论中引入这个新的公理是否合适?

与无限集基数有关的问题,通常都是异常复杂的。例如连续统假设,在ZFC中既无法证明,也无法推翻。这就引发了一类新的问题,能否在集合论中引入一些新的公理,以获得一些新的结论。

根据化变以及派生映射的定义,可以得到如下定理:

派生单射定理:如果是从的单射,则是从的单射。

推论1:设是两个无限集,分别是其无限子集簇(所有无限子集构成的集合)。如果存在从的单射,则存在从的单射。

考虑推论1的逆命题,如果存在从的单射,则存在从的单射。这个命题在直观上是正确的,但无法在ZFC框架内证明或推翻(至少我证明不了,并且未发现有文献研究过该问题)。因此,建议把这个命题作为一个新的公理引入集合论。一旦引入这个新的公理,我们就可得到另一个符合直观的结论:

回复此楼
0/0的意义是所有数的集合
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

shabaolin

铜虫 (著名写手)

maojun1998

银虫 (正式写手)

maojun1998

银虫 (正式写手)

tigou

木虫 (正式写手)

tigou

木虫 (正式写手)

tigou

木虫 (正式写手)

zaomingyi

金虫 (小有名气)

tigou

木虫 (正式写手)

相关版块跳转 我要订阅楼主 tigou 的主题更新
信息提示
请填处理意见