| 查看: 1331 | 回复: 8 | ||
tigou木虫 (正式写手)
|
[求助]
在集合论中引入这个新的公理是否合适?
|
|
与无限集基数有关的问题,通常都是异常复杂的。例如连续统假设,在ZFC中既无法证明,也无法推翻。这就引发了一类新的问题,能否在集合论中引入一些新的公理,以获得一些新的结论。 根据化变以及派生映射的定义,可以得到如下定理: 派生单射定理:如果 推论1:设 考虑推论1的逆命题,如果存在从 |
» 猜你喜欢
AI论文写作工具:是科研加速器还是学术作弊器?
已经有4人回复
寻求一种能扛住强氧化性腐蚀性的容器密封件
已经有7人回复
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有8人回复
申请2026年博士
已经有6人回复
请问哪里可以有青B申请的本子可以借鉴一下。
已经有5人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有5人回复
2025冷门绝学什么时候出结果
已经有7人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有6人回复
Bioresource Technology期刊,第一次返修的时候被退回好几次了
已经有7人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复

shabaolin
铜虫 (著名写手)
- 应助: 4 (幼儿园)
- 金币: 8603.4
- 红花: 6
- 帖子: 1207
- 在线: 145.2小时
- 虫号: 868907
- 注册: 2009-10-12
- 专业: 高分子物理与高分子物理化
2楼2016-02-11 07:03:56
maojun1998
银虫 (正式写手)
- 数学EPI: 1
- 应助: 16 (小学生)
- 金币: 460.3
- 散金: 2373
- 红花: 70
- 帖子: 664
- 在线: 169.3小时
- 虫号: 3338525
- 注册: 2014-07-25
- 专业: 几何学

3楼2016-02-11 11:14:28
maojun1998
银虫 (正式写手)
- 数学EPI: 1
- 应助: 16 (小学生)
- 金币: 460.3
- 散金: 2373
- 红花: 70
- 帖子: 664
- 在线: 169.3小时
- 虫号: 3338525
- 注册: 2014-07-25
- 专业: 几何学

4楼2016-02-11 11:15:39
tigou
木虫 (正式写手)
- 数学EPI: 1
- 应助: 3 (幼儿园)
- 金币: 2477.6
- 散金: 252
- 红花: 4
- 帖子: 709
- 在线: 225.9小时
- 虫号: 3724311
- 注册: 2015-03-10
- 专业: 数论
|
1楼的结束部分就是应用。用文字叙述即,任给两个无限集,两者等势是两者的冥集等势的充要条件。这个命题是广义连续统假设的必要条件,但非充分条件。该命题在ZFC框架内无法证明也无法推翻,不信的可尝试找出证明或反例。但引入新公理后即可证明。换句话说,新公理刻画了无限集与其幂集之间的一种联系,只要两个无限集的幂集之间存在双射,则他们本身之间也必然存在双射。幂集之间的双射可能是混乱的,例如A的某个有限子集对应着B的无限子集,新公理可使混乱的对应整洁化,使一元子集对应一元子集,二元子集对应二元子集,概言之,使任意的具有对应关系的子集的基数相等。 发自小木虫Android客户端 |

5楼2016-02-11 15:11:42
tigou
木虫 (正式写手)
- 数学EPI: 1
- 应助: 3 (幼儿园)
- 金币: 2477.6
- 散金: 252
- 红花: 4
- 帖子: 709
- 在线: 225.9小时
- 虫号: 3724311
- 注册: 2015-03-10
- 专业: 数论

6楼2016-02-11 15:42:52
tigou
木虫 (正式写手)
- 数学EPI: 1
- 应助: 3 (幼儿园)
- 金币: 2477.6
- 散金: 252
- 红花: 4
- 帖子: 709
- 在线: 225.9小时
- 虫号: 3724311
- 注册: 2015-03-10
- 专业: 数论
|
选择公理也可用化变的元映射进行表示。 任给非空集A和B,若元映射 满足 则存在映射 满足 用化变的视角不难看出,连续统假设和选择公理有一个共同的特点,即与无限集的幂集紧密相关。并且都试图通过与幂集相关的某些性质找出与原集相关的性质。本帖建议的新公理也体现着同样的努力方向。我的感触是,利用派生映射、化变等概念,可以方便地从给定集合的相关性质出发,找到其幂集的对应性质;但反过来的过程则要复杂得多,需要引入若干新的公理才能进行逆推。 例如,如果甲乙两个集合等式,则它们的幂集也等势。这个结论可轻松证明,但反过来,如果甲乙两个集合的幂集等势,则甲乙两个集合本身是否也等势?这个命题却难得要命,可能在ZF和ZFC中都无解,并且与连续统假设密切相关(但并无等价)。更重要的是,这个命题在直觉上是正确的,其正确性比选择公理和连续统假设更直观。 还有一个更简洁的命题可导出选择公理: 任给非空集A,存在映射 |

7楼2016-02-16 15:01:39
8楼2016-02-16 17:50:08
tigou
木虫 (正式写手)
- 数学EPI: 1
- 应助: 3 (幼儿园)
- 金币: 2477.6
- 散金: 252
- 红花: 4
- 帖子: 709
- 在线: 225.9小时
- 虫号: 3724311
- 注册: 2015-03-10
- 专业: 数论

9楼2016-02-16 18:56:51













回复此楼