|
|
【答案】应助回帖
用Mathematica算地,怎么看着好复杂啊。 将就咯
In[5]:= Integrate[Sqrt[4a-(x-1-a)^2]/((1+b*x)*(2*Pi*a*x)), {x,(1-Sqrt[a])^2,(1+Sqrt[a])^2}]
2 2
Out[5]= ConditionalExpression[(-(Pi + 2 Sqrt[-1 - 2 (1 + a) b - (-1 + a) b ] Log[2] +
(4 I) Sqrt[a]
> (2 I) (-1 + a) b Log[-------------] -
3
(-1 + a)
2 2 2
> 2 Sqrt[-1 - 2 (1 + a) b - (-1 + a) b ] Log[1 + (-1 + Sqrt[a]) b] +
2 2 2
> 2 Sqrt[-1 - 2 (1 + a) b - (-1 + a) b ] Log[Sqrt[a] (1 + (-1 + Sqrt[a]) b)]) / (2 b) +
-Pi (-4 I) Sqrt[a]
> (--- + I (-1 + a) b Log[--------------] -
2 3
(-1 + a)
2 2 2
> Sqrt[-1 - 2 (1 + a) b - (-1 + a) b ] Log[1 + (1 + Sqrt[a]) b] +
2 2 2
> Sqrt[-1 - 2 (1 + a) b - (-1 + a) b ] Log[-2 Sqrt[a] (1 + (1 + Sqrt[a]) b)]) / b) /
1 + a 1 + a
> (2 a Pi), Re[(1 + a) b] >= -1 && (------- \[NotElement] Reals || Re[-------] > 2 ||
Sqrt[a] Sqrt[a]
2
1 + a -1 - (-1 + Sqrt[a]) b
> Re[-------] < -2) && (---------------------- \[NotElement] Reals ||
Sqrt[a] Sqrt[a] b
2
-1 - (-1 + Sqrt[a]) b
> Re[----------------------] < 0 ||
Sqrt[a] b
2 2
-1 - (-1 + Sqrt[a]) b -1 - (-1 + Sqrt[a]) b
> ((Re[----------------------] >= 4 || Re[----------------------] <= 0) &&
Sqrt[a] b Sqrt[a] b
2 2
1 + (-1 + Sqrt[a]) b 1 + (-1 + Sqrt[a]) b
> (--------------------- \[NotElement] Reals || Re[---------------------] < -4)))]
Sqrt[a] b Sqrt[a] b |
|