24小时热门版块排行榜    

查看: 632  |  回复: 4

abcd702848

金虫 (正式写手)

[求助] 这次是一个求极值的问题。

自己现在遇到一个问题,是一个式子f(k1*m),这个方程中的k1是一个常数,而同时m是一个区间[1:600],不过这里的横坐标是log10(m),而不是m,自己现在想得到f(k1*m)在横坐标log10(m)上面的几个极值的位置(采用k1来表示)。具体f(k1*m)的方程比较复杂。
诸位,这个式子很长,我也是直接从matlab上面搞下来的。


2592480341699211/1125899906842624*m*(6720954322096857824910798022521/1267650600228229401496703205376*m*(1/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)*(1/2/m*exp(2*m^(1/2)) + 1/m^(1/2)*exp(2*m^(1/2)) - 1/4/m^(3/2)*exp(2*m^(1/2)) + 1/4/m^(3/2) - 1/2/m*cos(m^(1/2))*exp(m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) - 1/2/m*sin(m^(1/2))*exp(m^(1/2)) + 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2))) + 1/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)*(1/4*k1^2/(k1*m)^(3/2) + k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - 1/4*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + 1/2*k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) - 1/2*k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) - k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2)) + 2*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(cos(m^(1/2))*exp(m^(1/2)) - 1/2/m^(1/2)*exp(2*m^(1/2)) - exp(2*m^(1/2)) + 1/2/m^(1/2) + sin(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2))) + 2/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))*(1/2*k1/(k1*m)^(1/2) - k1*exp(2*(k1*m)^(1/2)) - 1/2*k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 2/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^3*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))^2 + (m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(1/m*exp(2*m^(1/2)) - 1/2/m^(3/2)*exp(2*m^(1/2)) + 1/2/m^(3/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m*sin(m^(1/2))*exp(m^(1/2)) - 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2))) - 2*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))^2*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^3 + 1/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + 1/2*k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(3/2) - 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2))) + 2592480341699211/1125899906842624*m*(2592480341699211/1125899906842624*m*(1/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)*(1/m*exp(2*m^(1/2)) - 3/4/m^2*exp(2*m^(1/2)) + 3/8/m^(5/2)*exp(2*m^(1/2)) - 3/8/m^(5/2) - 1/2/m*cos(m^(1/2))*exp(m^(1/2)) + 3/4/m^2*cos(m^(1/2))*exp(m^(1/2)) + 1/2/m*sin(m^(1/2))*exp(m^(1/2)) + 3/4/m^2*sin(m^(1/2))*exp(m^(1/2)) - 3/4/m^(5/2)*sin(m^(1/2))*exp(m^(1/2))) + 1/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)*(3/8*k1^3*exp(2*(k1*m)^(1/2))/(k1*m)^(5/2) - 1/2*k1^3*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) - 3/8*k1^3/(k1*m)^(5/2) + k1^2/m*exp(2*(k1*m)^(1/2)) - 3/4*k1/m^2*exp(2*(k1*m)^(1/2)) + 3/4*k1/m^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 3/4*k1/m^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + 1/2*k1^3*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(3/2) - 3/4*k1^3*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(5/2) + 1/2*k1^2/m*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - 1/2*k1^2/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1/2*k1^2/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) - 1/2*k1^2/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2)) + 6/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^4*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))^3 + 3/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(1/m*exp(2*m^(1/2)) - 1/2/m^(3/2)*exp(2*m^(1/2)) + 1/2/m^(3/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m*sin(m^(1/2))*exp(m^(1/2)) - 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2)))*(cos(m^(1/2))*exp(m^(1/2)) - 1/2/m^(1/2)*exp(2*m^(1/2)) - exp(2*m^(1/2)) + 1/2/m^(1/2) + sin(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2))) - 6*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))^2/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^3*(cos(m^(1/2))*exp(m^(1/2)) - 1/2/m^(1/2)*exp(2*m^(1/2)) - exp(2*m^(1/2)) + 1/2/m^(1/2) + sin(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2))) + (m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(1/m^(3/2)*exp(2*m^(1/2)) - 3/2/m^2*exp(2*m^(1/2)) + 3/4/m^(5/2)*exp(2*m^(1/2)) + 1/2/m^(3/2)*cos(m^(1/2))*exp(m^(1/2)) - 3/4/m^(5/2)*cos(m^(1/2))*exp(m^(1/2)) - 3/2/m^2*sin(m^(1/2))*exp(m^(1/2)) + 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2)) + 3/4/m^(5/2)*sin(m^(1/2))*exp(m^(1/2))) + 6*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))^3*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^4 + 1/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(3/4*k1^3*exp(2*(k1*m)^(1/2))/(k1*m)^(5/2) - 3/2*k1/m^2*exp(2*(k1*m)^(1/2)) - 3/2*k1/m^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) - 3/4*k1^3*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(5/2) + 3/4*k1^3*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(5/2) + k1^2/m*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + 1/2*k1^2/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + 1/2*k1^2/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 3/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))*(1/4*k1^2/(k1*m)^(3/2) + k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - 1/4*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + 1/2*k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) - 1/2*k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) - k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2)) - 6/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^3*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))^2*(1/2*k1/(k1*m)^(1/2) - k1*exp(2*(k1*m)^(1/2)) - 1/2*k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 3*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(1/2/m*exp(2*m^(1/2)) + 1/m^(1/2)*exp(2*m^(1/2)) - 1/4/m^(3/2)*exp(2*m^(1/2)) + 1/4/m^(3/2) - 1/2/m*cos(m^(1/2))*exp(m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) - 1/2/m*sin(m^(1/2))*exp(m^(1/2)) + 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2))) + 3/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*(k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + 1/2*k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(3/2) - 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2))*(1/2*k1/(k1*m)^(1/2) - k1*exp(2*(k1*m)^(1/2)) - 1/2*k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 6/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^3*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))*(k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + 1/2*k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(3/2) - 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2)) - 6*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^3*(1/m*exp(2*m^(1/2)) - 1/2/m^(3/2)*exp(2*m^(1/2)) + 1/2/m^(3/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m*sin(m^(1/2))*exp(m^(1/2)) - 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2)))) + 2592480341699211/562949953421312/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)*(1/2/m*exp(2*m^(1/2)) + 1/m^(1/2)*exp(2*m^(1/2)) - 1/4/m^(3/2)*exp(2*m^(1/2)) + 1/4/m^(3/2) - 1/2/m*cos(m^(1/2))*exp(m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) - 1/2/m*sin(m^(1/2))*exp(m^(1/2)) + 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2))) + 2592480341699211/562949953421312/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)*(1/4*k1^2/(k1*m)^(3/2) + k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - 1/4*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + 1/2*k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) - 1/2*k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) - k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2)) + 2592480341699211/281474976710656*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(cos(m^(1/2))*exp(m^(1/2)) - 1/2/m^(1/2)*exp(2*m^(1/2)) - exp(2*m^(1/2)) + 1/2/m^(1/2) + sin(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2))) + 2592480341699211/281474976710656/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))*(1/2*k1/(k1*m)^(1/2) - k1*exp(2*(k1*m)^(1/2)) - 1/2*k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 2592480341699211/281474976710656/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^3*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))^2 + 2592480341699211/562949953421312*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(1/m*exp(2*m^(1/2)) - 1/2/m^(3/2)*exp(2*m^(1/2)) + 1/2/m^(3/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m*sin(m^(1/2))*exp(m^(1/2)) - 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2))) - 2592480341699211/281474976710656*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))^2*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^3 + 2592480341699211/562949953421312/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + 1/2*k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(3/2) - 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2))) - 6720954322096857824910798022521/1267650600228229401496703205376/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)*(1/2*k1/(k1*m)^(1/2) - k1*exp(2*(k1*m)^(1/2)) - 1/2*k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 6720954322096857824910798022521/1267650600228229401496703205376/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)*(cos(m^(1/2))*exp(m^(1/2)) - 1/2/m^(1/2)*exp(2*m^(1/2)) - exp(2*m^(1/2)) + 1/2/m^(1/2) + sin(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2))) + 6720954322096857824910798022521/1267650600228229401496703205376*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2 + 6720954322096857824910798022521/1267650600228229401496703205376/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)))
回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

我想要的,我一定争取;我想要的,但是不符合客观实际的,我会看着
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

feixiaolin

荣誉版主 (文坛精英)

优秀版主

  100+行的公式,蛮吓人的。
2楼2014-02-11 16:44:30
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

abcd702848

金虫 (正式写手)

引用回帖:
2楼: Originally posted by feixiaolin at 2014-02-11 16:44:30
  100+行的公式,蛮吓人的。

汗   其实  相当于求sin(x)+kcos(kx)   这种函数的极值所在的位置(跟k)有关
我想要的,我一定争取;我想要的,但是不符合客观实际的,我会看着
3楼2014-02-11 17:01:34
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

abcd702848

金虫 (正式写手)

feixiaolin: 屏蔽内容, 内容重复 2014-02-11 18:16:54
本帖内容被屏蔽

4楼2014-02-11 17:01:41
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

peterflyer

木虫之王 (文学泰斗)

peterflyer


楼主这个问题是会吓到人的,太复杂麻烦了,稍不注意就会出错。呵呵。
5楼2014-02-11 20:28:19
已阅   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 abcd702848 的主题更新
信息提示
请填处理意见