| 查看: 633 | 回复: 4 | |||
abcd702848金虫 (正式写手)
|
[求助]
这次是一个求极值的问题。
|
|
自己现在遇到一个问题,是一个式子f(k1*m),这个方程中的k1是一个常数,而同时m是一个区间[1:600],不过这里的横坐标是log10(m),而不是m,自己现在想得到f(k1*m)在横坐标log10(m)上面的几个极值的位置(采用k1来表示)。具体f(k1*m)的方程比较复杂。 诸位,这个式子很长,我也是直接从matlab上面搞下来的。 2592480341699211/1125899906842624*m*(6720954322096857824910798022521/1267650600228229401496703205376*m*(1/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)*(1/2/m*exp(2*m^(1/2)) + 1/m^(1/2)*exp(2*m^(1/2)) - 1/4/m^(3/2)*exp(2*m^(1/2)) + 1/4/m^(3/2) - 1/2/m*cos(m^(1/2))*exp(m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) - 1/2/m*sin(m^(1/2))*exp(m^(1/2)) + 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2))) + 1/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)*(1/4*k1^2/(k1*m)^(3/2) + k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - 1/4*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + 1/2*k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) - 1/2*k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) - k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2)) + 2*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(cos(m^(1/2))*exp(m^(1/2)) - 1/2/m^(1/2)*exp(2*m^(1/2)) - exp(2*m^(1/2)) + 1/2/m^(1/2) + sin(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2))) + 2/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))*(1/2*k1/(k1*m)^(1/2) - k1*exp(2*(k1*m)^(1/2)) - 1/2*k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 2/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^3*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))^2 + (m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(1/m*exp(2*m^(1/2)) - 1/2/m^(3/2)*exp(2*m^(1/2)) + 1/2/m^(3/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m*sin(m^(1/2))*exp(m^(1/2)) - 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2))) - 2*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))^2*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^3 + 1/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + 1/2*k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(3/2) - 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2))) + 2592480341699211/1125899906842624*m*(2592480341699211/1125899906842624*m*(1/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)*(1/m*exp(2*m^(1/2)) - 3/4/m^2*exp(2*m^(1/2)) + 3/8/m^(5/2)*exp(2*m^(1/2)) - 3/8/m^(5/2) - 1/2/m*cos(m^(1/2))*exp(m^(1/2)) + 3/4/m^2*cos(m^(1/2))*exp(m^(1/2)) + 1/2/m*sin(m^(1/2))*exp(m^(1/2)) + 3/4/m^2*sin(m^(1/2))*exp(m^(1/2)) - 3/4/m^(5/2)*sin(m^(1/2))*exp(m^(1/2))) + 1/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)*(3/8*k1^3*exp(2*(k1*m)^(1/2))/(k1*m)^(5/2) - 1/2*k1^3*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) - 3/8*k1^3/(k1*m)^(5/2) + k1^2/m*exp(2*(k1*m)^(1/2)) - 3/4*k1/m^2*exp(2*(k1*m)^(1/2)) + 3/4*k1/m^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 3/4*k1/m^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + 1/2*k1^3*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(3/2) - 3/4*k1^3*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(5/2) + 1/2*k1^2/m*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - 1/2*k1^2/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1/2*k1^2/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) - 1/2*k1^2/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2)) + 6/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^4*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))^3 + 3/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(1/m*exp(2*m^(1/2)) - 1/2/m^(3/2)*exp(2*m^(1/2)) + 1/2/m^(3/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m*sin(m^(1/2))*exp(m^(1/2)) - 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2)))*(cos(m^(1/2))*exp(m^(1/2)) - 1/2/m^(1/2)*exp(2*m^(1/2)) - exp(2*m^(1/2)) + 1/2/m^(1/2) + sin(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2))) - 6*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))^2/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^3*(cos(m^(1/2))*exp(m^(1/2)) - 1/2/m^(1/2)*exp(2*m^(1/2)) - exp(2*m^(1/2)) + 1/2/m^(1/2) + sin(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2))) + (m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(1/m^(3/2)*exp(2*m^(1/2)) - 3/2/m^2*exp(2*m^(1/2)) + 3/4/m^(5/2)*exp(2*m^(1/2)) + 1/2/m^(3/2)*cos(m^(1/2))*exp(m^(1/2)) - 3/4/m^(5/2)*cos(m^(1/2))*exp(m^(1/2)) - 3/2/m^2*sin(m^(1/2))*exp(m^(1/2)) + 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2)) + 3/4/m^(5/2)*sin(m^(1/2))*exp(m^(1/2))) + 6*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))^3*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^4 + 1/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(3/4*k1^3*exp(2*(k1*m)^(1/2))/(k1*m)^(5/2) - 3/2*k1/m^2*exp(2*(k1*m)^(1/2)) - 3/2*k1/m^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) - 3/4*k1^3*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(5/2) + 3/4*k1^3*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(5/2) + k1^2/m*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + 1/2*k1^2/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + 1/2*k1^2/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 3/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))*(1/4*k1^2/(k1*m)^(3/2) + k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - 1/4*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + 1/2*k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) - 1/2*k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) - k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2)) - 6/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^3*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))^2*(1/2*k1/(k1*m)^(1/2) - k1*exp(2*(k1*m)^(1/2)) - 1/2*k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 3*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(1/2/m*exp(2*m^(1/2)) + 1/m^(1/2)*exp(2*m^(1/2)) - 1/4/m^(3/2)*exp(2*m^(1/2)) + 1/4/m^(3/2) - 1/2/m*cos(m^(1/2))*exp(m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) - 1/2/m*sin(m^(1/2))*exp(m^(1/2)) + 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2))) + 3/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*(k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + 1/2*k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(3/2) - 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2))*(1/2*k1/(k1*m)^(1/2) - k1*exp(2*(k1*m)^(1/2)) - 1/2*k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 6/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^3*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))*(k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + 1/2*k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(3/2) - 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2)) - 6*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^3*(1/m*exp(2*m^(1/2)) - 1/2/m^(3/2)*exp(2*m^(1/2)) + 1/2/m^(3/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m*sin(m^(1/2))*exp(m^(1/2)) - 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2)))) + 2592480341699211/562949953421312/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)*(1/2/m*exp(2*m^(1/2)) + 1/m^(1/2)*exp(2*m^(1/2)) - 1/4/m^(3/2)*exp(2*m^(1/2)) + 1/4/m^(3/2) - 1/2/m*cos(m^(1/2))*exp(m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) - 1/2/m*sin(m^(1/2))*exp(m^(1/2)) + 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2))) + 2592480341699211/562949953421312/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)*(1/4*k1^2/(k1*m)^(3/2) + k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - 1/4*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + 1/2*k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1/m*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) - 1/2*k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) - k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2)) + 2592480341699211/281474976710656*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(cos(m^(1/2))*exp(m^(1/2)) - 1/2/m^(1/2)*exp(2*m^(1/2)) - exp(2*m^(1/2)) + 1/2/m^(1/2) + sin(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2))) + 2592480341699211/281474976710656/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))*(1/2*k1/(k1*m)^(1/2) - k1*exp(2*(k1*m)^(1/2)) - 1/2*k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 2592480341699211/281474976710656/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^3*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))^2 + 2592480341699211/562949953421312*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2*(1/m*exp(2*m^(1/2)) - 1/2/m^(3/2)*exp(2*m^(1/2)) + 1/2/m^(3/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m*sin(m^(1/2))*exp(m^(1/2)) - 1/2/m^(3/2)*sin(m^(1/2))*exp(m^(1/2))) - 2592480341699211/281474976710656*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))^2*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^3 + 2592480341699211/562949953421312/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1/m*exp(2*(k1*m)^(1/2)) - 1/2*k1^2*exp(2*(k1*m)^(1/2))/(k1*m)^(3/2) + k1/m*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + 1/2*k1^2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(3/2) - 1/2*k1^2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(3/2))) - 6720954322096857824910798022521/1267650600228229401496703205376/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)*(1/2*k1/(k1*m)^(1/2) - k1*exp(2*(k1*m)^(1/2)) - 1/2*k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) + k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2)) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2)) - 6720954322096857824910798022521/1267650600228229401496703205376/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)*(cos(m^(1/2))*exp(m^(1/2)) - 1/2/m^(1/2)*exp(2*m^(1/2)) - exp(2*m^(1/2)) + 1/2/m^(1/2) + sin(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2))) + 6720954322096857824910798022521/1267650600228229401496703205376*(1/m^(1/2)*exp(2*m^(1/2)) - 1/m^(1/2)*cos(m^(1/2))*exp(m^(1/2)) + 1/m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))*(m^(1/2) - m^(1/2)*exp(2*m^(1/2)) + 2*m^(1/2)*sin(m^(1/2))*exp(m^(1/2)))/(exp(2*m^(1/2)) - 2*cos(m^(1/2))*exp(m^(1/2)) + 1)^2 + 6720954322096857824910798022521/1267650600228229401496703205376/(exp(2*(k1*m)^(1/2)) - 2*exp((k1*m)^(1/2))*cos((k1*m)^(1/2)) + 1)^2*((k1*m)^(1/2) - exp(2*(k1*m)^(1/2))*(k1*m)^(1/2) + 2*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))*(k1*m)^(1/2))*(k1*exp(2*(k1*m)^(1/2))/(k1*m)^(1/2) - k1*exp((k1*m)^(1/2))*cos((k1*m)^(1/2))/(k1*m)^(1/2) + k1*sin((k1*m)^(1/2))*exp((k1*m)^(1/2))/(k1*m)^(1/2))) |
» 猜你喜欢
投稿精细化工
已经有6人回复
博士读完未来一定会好吗
已经有36人回复
之前让一硕士生水了7个发明专利,现在这7个获批发明专利的维护费可从哪儿支出哈?
已经有10人回复
博士申请都是内定的吗?
已经有9人回复
心脉受损
已经有8人回复
读博
已经有5人回复
» 本主题相关价值贴推荐,对您同样有帮助:
正态分布问题求助
已经有8人回复
二元函数偏导存在,是不是函数就连续
已经有35人回复
一个导数问题(后续)
已经有11人回复
请教函数求解问题
已经有11人回复
如何求解带有固定参数的超定方程组?
已经有21人回复
微分方程求极值
已经有5人回复
一个三元二次函数求极值
已经有13人回复
MATLAB能否将一条曲线拆分成两条曲线
已经有3人回复
随便给一个优化问题,能写出其对偶问题吗,或者给出参考文献也行,多谢
已经有5人回复
请教下:如何求一个函数在一定范围内的全部解
已经有10人回复
毕设,数学相关专业,求指导!
已经有18人回复
一个区间搜索的c语言程序 出问题了
已经有8人回复
【求助】一个含不等式约束的变分问题!
已经有6人回复
【求助】matlab中如何求一个向量的极大值
已经有7人回复
【求助】急求帮助 求极值问题!!
已经有11人回复
【求助】求问一个寻找最优解问题,是泛函问题么
已经有22人回复
响应曲面求极值方法讨论!
已经有6人回复

feixiaolin
荣誉版主 (文坛精英)
-

专家经验: +518 - 应助: 942 (博后)
- 贵宾: 1.275
- 金币: 2930
- 散金: 58785
- 红花: 532
- 沙发: 11
- 帖子: 24215
- 在线: 2601.8小时
- 虫号: 2139575
- 注册: 2012-11-21
- 专业: 光学信息获取与处理
- 管辖: 数学
2楼2014-02-11 16:44:30
abcd702848
金虫 (正式写手)
- 应助: 3 (幼儿园)
- 金币: 1142.8
- 红花: 7
- 帖子: 545
- 在线: 144.9小时
- 虫号: 1844670
- 注册: 2012-06-02
- 性别: GG
- 专业: 应用地球物理学

3楼2014-02-11 17:01:34
abcd702848
金虫 (正式写手)
feixiaolin: 屏蔽内容, 内容重复 2014-02-11 18:16:54
|
本帖内容被屏蔽 |
4楼2014-02-11 17:01:41
peterflyer
木虫之王 (文学泰斗)
peterflyer
- 数学EPI: 10
- 应助: 20282 (院士)
- 金币: 145742
- 红花: 1374
- 帖子: 93072
- 在线: 7693.7小时
- 虫号: 1482829
- 注册: 2011-11-08
- 性别: GG
- 专业: 功能陶瓷
5楼2014-02-11 20:28:19













回复此楼
100+行的公式,蛮吓人的。