²é¿´: 1762  |  »Ø¸´: 19

×¹ÂäÌìʯ

ľ³æ (СÓÐÃûÆø)

[ÇóÖú] ÓÃmathematics½â·½³Ì×é

NSolve[{-d^2 - (4 H \[Pi]^2 Sqrt[36 + R^4/H^2] r0^3)/(d^2 m R^2) + (
    4 H \[Pi]^2 r0^3 Sqrt[R^4/H^2 + 4 r0^2])/(
    d^2 m R^2) + (-2 R^2 + 4 Sqrt[R^4 + 4 H^2 r0^2])/(
    4 H k \[Pi] r0^2 + m Sqrt[R^4 + 4 H^2 r0^2]) +
    1/R^2 8 H \[Pi]^2 ((2 Sqrt[2]
           H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(
           6 Sqrt[2] d^2 H m)/Sqrt[
           d^4 m^2 R^4 -
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 -
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2]
           H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(
           6 Sqrt[2] d^2 H m)/Sqrt[
           d^4 m^2 R^4 +
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 +
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2]
           H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2]
           r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[
           
           d^4 m^2 R^4 -
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]
           Sqrt[d^4 m^2 R^4 -
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2]
           H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2]
           r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[
           d^4 m^2 R^4 +
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]
           Sqrt[d^4 m^2 R^4 +
           d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) -
    1/R^2 8 H \[Pi]^2 ((2 Sqrt[2]
           H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(
           2 Sqrt[2] d^2 H m r0)/Sqrt[
           d^4 m^2 R^4 -
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 -
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2]
           H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(
           2 Sqrt[2] d^2 H m r0)/Sqrt[
           d^4 m^2 R^4 +
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 +
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2]
           H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2]
           ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[
           d^4 m^2 R^4 -
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          R^4 + 4 H^2 r0^2] Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 -
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2]
           H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2]
           ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[
           d^4 m^2 R^4 +
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          R^4 + 4 H^2 r0^2] Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 +
           d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) +
    1/(d^6 m^3 R^8)
      8 H^2 k \[Pi]^2 r0^3 (d^2 m r0 R^2 (d^2 m r0 R^2 +
          2 \[Pi] (-4 H k + m R^2) r0^3) +
       2 \[Pi]^2 (-4 H k + m R^2)^2 r0^6 Log[
         d^2 m r0 R^2 + \[Pi] (4 H k - m R^2) r0^3]) == 0,
  r0^2 - (144500 R^2)/(240000 a \[Pi] + 5 \[Pi] R^2) == 0}, {a, r0}]
½âÉÏÃæÁ½¸ö·½³Ì×飬ÎÒÏëµÃ³öaÓër0Ö®¼äµÄ¹ØÏµ£¬µ«ÊÇÔËÐв»Á˽á¹û¡£ÎÒÒ²³¢ÊÔÇóÊýÖµ½â£¬µ«ÊÇ
x = {1, 2, 3};
z+x==0;Print[z]
½á¹û²»ÊÇz={-1,-2,-3}¶øÊÇ
z
z
z
²»ÖªµÀÕ¦»ØÊ£¬ÇóÄÄλ¸ßÊÖ°ï°ï棡
»Ø¸´´ËÂ¥

» ÊÕ¼±¾ÌûµÄÌÔÌûר¼­ÍƼö

matlab

» ±¾Ìû@֪ͨ

» ²ÂÄãϲ»¶

» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍÆ¼ö£¬¶ÔÄúͬÑùÓаïÖú:

ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
»ØÌûÖö¥ ( ¹²ÓÐ1¸ö )

×¹ÂäÌìʯ

ľ³æ (СÓÐÃûÆø)

×¹ÂäÌìʯ: »ØÌûÖö¥ 2013-10-03 18:58:12
Ë­ÄܸæËßÎÒmathematicsÔõô½âÒþº¯Êý·½³ÌµÄÊýÖµ½â°¡£¡

±ÈÈ磺x+y=0;µ±x={0,0.1,0.2,0.3,0.4,¡­¡­,1.0}
ÇóyµÄÊýÖµ½â£¡


ÔõôÇó£¿
17Â¥2013-10-03 09:36:16
ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
»ØÌûÖ§³Ö ( ÏÔʾ֧³Ö¶È×î¸ßµÄǰ 50 Ãû )

walk1997

½ð³æ (ÖøÃûдÊÖ)

Clear["Global`*"];
eq[x_] := {x + y == 0};
var = {y};
r1[x_?NumericQ] := (y /. NSolve[eq[x], var])[[1]]
xx = {0.1, 0.2, 0.3, 0.4, 0.5};
Map[r1[#] &, xx]
Plot[r1[x], {x, 0, 1}]
--------------------
Óõ½Äã´úÂëµÄʱºò £¬°Ñ ·½³ÌºÍ ±äÁ¿»»Ï ǰÈýÐÐ
¶à¸ö½âµÄʱºò ×îºÃ´òÓ¡³öÀ´¿´¿´ »»ÏÂ[[1]]
»òÕßÓÃFindRoot ËÙ¶È¿ìЩ ²»ËÑË÷È«²¿½â
18Â¥2013-10-03 17:54:01
ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
ÆÕͨ»ØÌû

×¹ÂäÌìʯ

ľ³æ (СÓÐÃûÆø)

CODE:
-28900+(6*H^2*pi^2*r0^3*((555609333788003*r0^6*log(pi*(24*H - 25)*r0^3 + 2167500)*(24*H - 25)^2)/29386339412313374720000000 - (3*pi*r0^3*(24*H - 25))/722500 + 9/2))/112890625+sqrt(1562500 + r0^2)/15000000 + (289*(-((289*atan((2*sqrt(3*pi)*sqrt(1562500 + r0^2)*r0^3)/sqrt(r0^3*(-9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))))/sqrt(r0^3*(-9375000*pi*r0^3 +sqrt(83521 + 87890625000000*pi^2*r0^6)))) + (289*atan((2*sqrt(3*pi)*sqrt(1562500 + r0^2)*r0^3)/sqrt(-r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))))/sqrt(-r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))-((-9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6))*atan((2*r0^4)/sqrt(3125000*r0^6 - (r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))/(3*pi))))/(sqrt(9375000*pi*r0^6 - r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))) - 1/r0^3*sqrt(r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))*atan((2*r0*r0^3)/sqrt(3125000*r0^6 + (r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))/(3*pi)))))/(60000000*sqrt(3*pi)*sqrt(83521 + 87890625000000*pi^2*r0^6))-sqrt(1562500 + 3^2)/15000000 + (289*(-((289*atan((2*sqrt(3*pi)*sqrt(1562500 + 3^2)*r0^3)/sqrt(r0^3*(-9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))))/sqrt(r0^3*(-9375000*pi*r0^3 +sqrt(83521 + 87890625000000*pi^2*r0^6)))) + (289*atan((2*sqrt(3*pi)*sqrt(1562500 + 3^2)*r0^3)/sqrt(-r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))))/sqrt(-r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))- ((-9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6))*atan((2*3*r0^3)/sqrt(3125000*r0^6 - (r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))/(3*pi))))/(sqrt(9375000*pi*r0^6 - r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))) - 1/r0^3*sqrt(r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))*atan((2*3*r0^3)/sqrt(3125000*r0^6 + (r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))/(3*pi)))))/(60000000*sqrt(3*pi)*sqrt(83521 + 87890625000000*pi^2*r0^6))-((1250/(H^2*r0^2 + 1562500)^(1/2) - 2)*(2*pi*r0^2 - 57800))/(((H^2*r0^2 + 1562500)^(1/2)*(pi*r0^2 - 28900))/(120*H*pi*r0^2) - 1)=0

ÕâÊÇmatlabÖеÚÒ»¸öʽ×ÓµÄÐÎʽ£¬
лл¸÷λ´óÉñÁË£¡
2Â¥2013-09-28 10:02:38
ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

×¹ÂäÌìʯ

ľ³æ (СÓÐÃûÆø)

CODE:
NSolve[{-d^2 - (4 H \[Pi]^2 Sqrt[36 + R^4/H^2] r0^3)/(d^2 m R^2) + ( 4 H \[Pi]^2 r0^3 Sqrt[R^4/H^2 + 4 r0^2])/( d^2 m R^2) + (-2 R^2 + 4 Sqrt[R^4 + 4 H^2 r0^2])/( 4 H k \[Pi] r0^2 + m Sqrt[R^4 + 4 H^2 r0^2]) + 1/R^2 8 H \[Pi]^2 ((2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(6 Sqrt[2] d^2 H m)/Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[  d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(6 Sqrt[2] d^2 H m)/Sqrt[d^4 m^2 R^4 + d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[d^4 m^2 R^4 +d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2] H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2] r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[d^4 m^2 R^4 -  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]Sqrt[d^4 m^2 R^4 -  d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2] H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2] r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[ d^4 m^2 R^4 +  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ 36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[d^4 m^2 R^4 +  d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) -  1/R^2 8 H \[Pi]^2 ((2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 2 Sqrt[2] d^2 H m r0)/Sqrt[ d^4 m^2 R^4 -  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[  d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 -  d^2 m Sqrt[  d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 2 Sqrt[2] d^2 H m r0)/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 +  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2] H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2] ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[ d^4 m^2 R^4 -  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[  R^4 + 4 H^2 r0^2] Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[  d^4 m^2 R^4 -  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2] H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2] ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ R^4 + 4 H^2 r0^2] Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 +  d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) +  1/(d^6 m^3 R^8) 8 H^2 k \[Pi]^2 r0^3 (d^2 m r0 R^2 (d^2 m r0 R^2 + 2 \[Pi] (-4 H k + m R^2) r0^3) +  2 \[Pi]^2 (-4 H k + m R^2)^2 r0^6 Log[ d^2 m r0 R^2 + \[Pi] (4 H k - m R^2) r0^3]) == 0,  r0^2 - (144500 R^2)/(240000 a \[Pi] + 5 \[Pi] R^2) == 0}, {a, r0}](

ÕâÊÇmathematicsÖеÄÔ´³ÌÐò
3Â¥2013-09-28 10:14:59
ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

×¹ÂäÌìʯ

ľ³æ (СÓÐÃûÆø)

4Â¥2013-09-28 12:49:31
ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

chyanog

½ð³æ (СÓÐÃûÆø)

ÄãµÄH,k,R¶¼²»¸ø³ö¾ßÌåÖµµÄ»°ÓÃNSolveÊDz»ÐеÄ
5Â¥2013-09-28 13:52:09
ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

×¹ÂäÌìʯ

ľ³æ (СÓÐÃûÆø)

ÒýÓûØÌû:
5Â¥: Originally posted by chyanog at 2013-09-28 13:52:09
ÄãµÄH,k,R¶¼²»¸ø³ö¾ßÌåÖµµÄ»°ÓÃNSolveÊDz»ÐеÄ

²»Ì«Ã÷°×°¡£¡ÎÒÏëÇóaÓëRÖ®¼äµÄ¹ØÏµ£¡ÀïÃæµÄk=300£¬H=200£¬d=170£¬m=5£¬ÎÒ¶¼ÊǸøÁ˶¨ÖµµÄ£¡ÎÒÓÃSolveÒ²ÇóÁË£¬Ã»Óнá¹û¸Ä³ÉNSolve»¹ÊDz»ÐУ¡ÎÒÊǸö²ËÄñ£¬²»Ì«»áÓã¡
6Â¥2013-09-28 19:21:33
ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

×¹ÂäÌìʯ

ľ³æ (СÓÐÃûÆø)

ÎÒÈÃa=Ò»¸öÖµºó£¬Á½¸ö·½³Ì¶¼ÄÜÓÃmathematics»­³öͼÀ´£¬Ò²¾ÍÊÇÒ»¶¨ÄÜÓÃÇó³öÊýÖµ½â£¬µ«ÎÒ²»»áÓÃËüÇó¡£matlabÎÒÒ²ÓÃÁË£¬»­²»³öͼÏÔʾno found¡£¸ÉÔõô°ì°¡£¡
7Â¥2013-09-28 22:04:14
ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

×¹ÂäÌìʯ

ľ³æ (СÓÐÃûÆø)

8Â¥2013-09-29 09:20:55
ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

×¹ÂäÌìʯ

ľ³æ (СÓÐÃûÆø)

9Â¥2013-09-29 10:53:34
ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

×¹ÂäÌìʯ

ľ³æ (СÓÐÃûÆø)

10Â¥2013-09-29 16:29:06
ÒÑÔÄ   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
Ïà¹Ø°æ¿éÌø×ª ÎÒÒª¶©ÔÄÂ¥Ö÷ ×¹ÂäÌìʯ µÄÖ÷Ìâ¸üÐÂ
×î¾ßÈËÆøÈÈÌûÍÆ¼ö [²é¿´È«²¿] ×÷Õß »Ø/¿´ ×îºó·¢±í
[¿¼²©] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +4 khieu8v8m0 2026-02-22 4/200 2026-02-23 06:46 by jsjzfl
[˶²©¼ÒÔ°] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 8rmuugja8q 2026-02-22 6/300 2026-02-23 06:39 by w4l55oybr1
[²©ºóÖ®¼Ò] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +4 khieu8v8m0 2026-02-22 5/250 2026-02-23 06:34 by w4l55oybr1
[¹«Åɳö¹ú] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 khieu8v8m0 2026-02-22 5/250 2026-02-23 06:29 by w4l55oybr1
[˶²©¼ÒÔ°] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +4 khieu8v8m0 2026-02-22 8/400 2026-02-23 06:24 by w4l55oybr1
[²©ºóÖ®¼Ò] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +6 3dfhjxgsh7 2026-02-22 8/400 2026-02-23 06:21 by w4l55oybr1
[¿¼ÑÐ] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +4 usprnugpzw 2026-02-21 10/500 2026-02-23 04:58 by 5jlh3qtdvx
[ÂÛÎÄͶ¸å] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 khieu8v8m0 2026-02-22 6/300 2026-02-23 02:08 by 5jlh3qtdvx
[¿¼²©] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +5 3dfhjxgsh7 2026-02-22 6/300 2026-02-23 02:04 by 5jlh3qtdvx
[½Ìʦ֮¼Ò] °æÃæ·Ñ¸Ã½»Âð +7 Æ»¹ûÔÚÄÄÀï 2026-02-22 8/400 2026-02-22 22:37 by otani
[»ù½ðÉêÇë] »ù½ðÕýÎÄ30Ò³Ö¸µÄÊDZ¨¸æÕýÎÄ»¹ÊÇÕû¸öÉêÇëÊé +5 successhe 2026-02-16 6/300 2026-02-22 21:38 by ɽÎ÷Ðü¿ÕË¿ÕÐüÎ
[»ù½ðÉêÇë] ÃæÉÏ¿ÉÒÔ³¬¹ý30Ò³°É£¿ +4 °¢À­¹±aragon 2026-02-22 4/200 2026-02-22 21:22 by ɽÎ÷Ðü¿ÕË¿ÕÐüÎ
[½Ìʦ֮¼Ò] ΪʲôÖйú´óѧ½ÌÊÚÃÇË®ÁËÄÇô¶àËùνµÄ¶¥»á¶¥¿¯£¬µ«»¹ÊÇ×ö²»³öÓîÊ÷»úÆ÷ÈË£¿ +5 »¶ÀÖËÌÒ¶Ýè 2026-02-21 5/250 2026-02-22 21:15 by ɽÎ÷Ðü¿ÕË¿ÕÐüÎ
[ÂÛÎÄͶ¸å] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +4 usprnugpzw 2026-02-21 6/300 2026-02-22 19:48 by w89i99eaeh
[ÕÒ¹¤×÷] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 usprnugpzw 2026-02-22 3/150 2026-02-22 16:37 by khieu8v8m0
[¹«Åɳö¹ú] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 usprnugpzw 2026-02-21 4/200 2026-02-22 16:27 by khieu8v8m0
[»ù½ðÉêÇë] ¡°ÈËÎÄÉç¿Æ¶øÂÛ£¬Ðí¶àѧÊõÑо¿»¹Ã»ÓдﵽÃñ¹úʱÆÚµÄˮƽ¡± +4 ËÕ¶«ÆÂ¶þÊÀ 2026-02-18 5/250 2026-02-22 16:07 by liangep1573
[»ù½ðÉêÇë] ʲôÊÇÈËÒ»Éú×îÖØÒªµÄ£¿ +4 ˲ϢÓîÖæ 2026-02-21 4/200 2026-02-22 11:44 by huagongfeihu
[»ù½ðÉêÇë] ½ñÄê´ºÍíÓм¸¸ö½ÚÄ¿ºÜ²»´í£¬µãÔÞ£¡ +11 ˲ϢÓîÖæ 2026-02-16 12/600 2026-02-21 21:14 by lq493392203
[»ù½ðÉêÇë] ÌåÖÆÄÚ³¤±²ËµÌåÖÆÄÚ¾ø´ó²¿·ÖÒ»±²×ÓÔڵײ㣬ÈçͬÄãÃÇÒ»Ñù´ó²¿·ÖÆÕͨ½ÌʦæÇÒÊÕÈëµÍ +9 ˲ϢÓîÖæ 2026-02-20 12/600 2026-02-21 10:39 by »¶ÀÖËÌÒ¶Ýè
ÐÅÏ¢Ìáʾ
ÇëÌî´¦ÀíÒâ¼û