| ²é¿´: 1762 | »Ø¸´: 19 | |||
×¹ÂäÌìʯľ³æ (СÓÐÃûÆø)
|
[ÇóÖú]
ÓÃmathematics½â·½³Ì×é
|
||
|
NSolve[{-d^2 - (4 H \[Pi]^2 Sqrt[36 + R^4/H^2] r0^3)/(d^2 m R^2) + ( 4 H \[Pi]^2 r0^3 Sqrt[R^4/H^2 + 4 r0^2])/( d^2 m R^2) + (-2 R^2 + 4 Sqrt[R^4 + 4 H^2 r0^2])/( 4 H k \[Pi] r0^2 + m Sqrt[R^4 + 4 H^2 r0^2]) + 1/R^2 8 H \[Pi]^2 ((2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 6 Sqrt[2] d^2 H m)/Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 6 Sqrt[2] d^2 H m)/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2] H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2] r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ 36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2] H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2] r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ 36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[d^4 m^2 R^4 + d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) - 1/R^2 8 H \[Pi]^2 ((2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 2 Sqrt[2] d^2 H m r0)/Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 2 Sqrt[2] d^2 H m r0)/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2] H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2] ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ R^4 + 4 H^2 r0^2] Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2] H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2] ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ R^4 + 4 H^2 r0^2] Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) + 1/(d^6 m^3 R^8) 8 H^2 k \[Pi]^2 r0^3 (d^2 m r0 R^2 (d^2 m r0 R^2 + 2 \[Pi] (-4 H k + m R^2) r0^3) + 2 \[Pi]^2 (-4 H k + m R^2)^2 r0^6 Log[ d^2 m r0 R^2 + \[Pi] (4 H k - m R^2) r0^3]) == 0, r0^2 - (144500 R^2)/(240000 a \[Pi] + 5 \[Pi] R^2) == 0}, {a, r0}] ½âÉÏÃæÁ½¸ö·½³Ì×飬ÎÒÏëµÃ³öaÓër0Ö®¼äµÄ¹ØÏµ£¬µ«ÊÇÔËÐв»Á˽á¹û¡£ÎÒÒ²³¢ÊÔÇóÊýÖµ½â£¬µ«ÊÇ x = {1, 2, 3}; z+x==0;Print[z] ½á¹û²»ÊÇz={-1,-2,-3}¶øÊÇ z z z ²»ÖªµÀÕ¦»ØÊ£¬ÇóÄÄλ¸ßÊÖ°ï°ï棡 |
» ÊÕ¼±¾ÌûµÄÌÔÌûר¼ÍƼö
matlab |
» ±¾Ìû@֪ͨ
» ²ÂÄãϲ»¶
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ4È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ4È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ5È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ5È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ8È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ8È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ10È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍÆ¼ö£¬¶ÔÄúͬÑùÓаïÖú:
¡¾½ô¼±Çó¾È¡¿Çó½âÒ»¸ö·½³Ì×éµÄ½üËÆ½â»òÕß¹À¼Æ½â£¬Óкΰ취
ÒѾÓÐ12È˻ظ´
ÓйØÓÚmathematicsµÄÎÊÌ⣬ÓÃmathematics¶ÔһЩµãÄâºÏ³öÒ»¸öÍÖÔ²·½³Ì
ÒѾÓÐ24È˻ظ´
Çó½âÒ»¸ö·½³Ì×飬¼±£¡£¡£¡
ÒѾÓÐ19È˻ظ´
Çë½Ì¸ßÊÖ£¬ÈçºÎ½â·ÇÏßÐÔ·½³Ì×飡£¡£¡
ÒѾÓÐ13È˻ظ´
·ÇÏßÐÔ·½³ÌµÄÏßÐÔ»¯ÎÊÌ⣬´óÉñÃǽøÀ´Ö¸½ÌÏ£¡£¡£¡£¡¸ÐлÁË£¡£¡£¡£¡£¡£¡£¡£¡£¡
ÒѾÓÐ9È˻ظ´
Çó¸ßÊֽⷽ³Ì×飨Ӧ¸Ã²»ÄÑ£©
ÒѾÓÐ22È˻ظ´
ÇóÖú¡ª¡ªÇó½âÈýÔª¶þ´Î¶àÏîʽ·½³Ì×é
ÒѾÓÐ9È˻ظ´
1stopt½â·½³Ì×é
ÒѾÓÐ12È˻ظ´
¹ØÓÚ²¡Ì¬·½³Ì×éÇó½âµÄÒÉÎÊ
ÒѾÓÐ5È˻ظ´
ÇóÖú½â¸´ÔÓ·ÇÏßÐÔ·½³Ì×éµÄºÃµÄ·½·¨
ÒѾÓÐ24È˻ظ´
Mathematica¹ØÓÚ»æÖÆÒþº¯Êý·½³Ì×éµÄÎÊÌ⣬¹òÇ󣬿ì·èÁË
ÒѾÓÐ11È˻ظ´
ÓÃmatlab½â·ÇÏßÐÔ·½³Ì×é
ÒѾÓÐ4È˻ظ´
mathematica½â·½³Ì×éΪʲô½â²»³öÀ´¾ßÌåµÄÊýÖµ£¿
ÒѾÓÐ4È˻ظ´
ÇóÖú-°ïÎÒÓÃmathematics¼ÆËãÏÂÏÂÃæµÄ·½³Ì×é
ÒѾÓÐ13È˻ظ´
Õâ¸ö·½³Ì×éÔõô½â°¡
ÒѾÓÐ14È˻ظ´
Çë½ÌmathematicÎÊÌ⣿¹ØÓÚ½â΢·Ö·½³Ì×éµÄºÍ»Í¼µÄһЩÎÊÌâ¡£
ÒѾÓÐ19È˻ظ´
ÇóÖú MATLAB½â·½³Ì×é-fslove
ÒѾÓÐ7È˻ظ´
ÇóÖúmatlab---fsolve½â·ÇÏßÐÔ·½³Ì×é
ÒѾÓÐ6È˻ظ´
ÇóÒ»¸ömathmeticaµÄ³ÌÐò
ÒѾÓÐ10È˻ظ´
¡¾ÇóÖú¡¿·½³Ì×éÓнâ¸ÃÓõ¥Êý»¹ÊÇÓø´Êý
ÒѾÓÐ4È˻ظ´
¡¾ÇóÖú¡¿³£Î¢·Ö·½³Ì×éµÄ½âÎö½â
ÒѾÓÐ3È˻ظ´
¡¾ÇóÖú¡¿½ô¼±ÇóÖúÓйØMATHEMATICAµÄÎÊÌâ
ÒѾÓÐ9È˻ظ´
×¹ÂäÌìʯ
ľ³æ (СÓÐÃûÆø)
- Ó¦Öú: 1 (Ó×¶ùÔ°)
- ½ð±Ò: 3388.2
- É¢½ð: 1282
- ºì»¨: 4
- Ìû×Ó: 296
- ÔÚÏß: 102.3Сʱ
- ³æºÅ: 2353106
- ×¢²á: 2013-03-17
- רҵ: ÉúÎïÎïÀí¡¢ÉúÎﻯѧÓë·Ö×Ó
17Â¥2013-10-03 09:36:16
walk1997
½ð³æ (ÖøÃûдÊÖ)
- Ó¦Öú: 1 (Ó×¶ùÔ°)
- ½ð±Ò: 4676.2
- ºì»¨: 22
- Ìû×Ó: 1066
- ÔÚÏß: 798.1Сʱ
- ³æºÅ: 416039
- ×¢²á: 2007-06-29
- ÐÔ±ð: GG
- רҵ: Á£×ÓÎïÀíѧºÍ³¡ÂÛ
|
Clear["Global`*"]; eq[x_] := {x + y == 0}; var = {y}; r1[x_?NumericQ] := (y /. NSolve[eq[x], var])[[1]] xx = {0.1, 0.2, 0.3, 0.4, 0.5}; Map[r1[#] &, xx] Plot[r1[x], {x, 0, 1}] -------------------- Óõ½Äã´úÂëµÄʱºò £¬°Ñ ·½³ÌºÍ ±äÁ¿»»Ï ǰÈýÐÐ ¶à¸ö½âµÄʱºò ×îºÃ´òÓ¡³öÀ´¿´¿´ »»ÏÂ[[1]] »òÕßÓÃFindRoot ËÙ¶È¿ìЩ ²»ËÑË÷È«²¿½â |
18Â¥2013-10-03 17:54:01
×¹ÂäÌìʯ
ľ³æ (СÓÐÃûÆø)
- Ó¦Öú: 1 (Ó×¶ùÔ°)
- ½ð±Ò: 3388.2
- É¢½ð: 1282
- ºì»¨: 4
- Ìû×Ó: 296
- ÔÚÏß: 102.3Сʱ
- ³æºÅ: 2353106
- ×¢²á: 2013-03-17
- רҵ: ÉúÎïÎïÀí¡¢ÉúÎﻯѧÓë·Ö×Ó
2Â¥2013-09-28 10:02:38
×¹ÂäÌìʯ
ľ³æ (СÓÐÃûÆø)
- Ó¦Öú: 1 (Ó×¶ùÔ°)
- ½ð±Ò: 3388.2
- É¢½ð: 1282
- ºì»¨: 4
- Ìû×Ó: 296
- ÔÚÏß: 102.3Сʱ
- ³æºÅ: 2353106
- ×¢²á: 2013-03-17
- רҵ: ÉúÎïÎïÀí¡¢ÉúÎﻯѧÓë·Ö×Ó
3Â¥2013-09-28 10:14:59
|
4Â¥2013-09-28 12:49:31
chyanog
½ð³æ (СÓÐÃûÆø)
- ³ÌÐòÇ¿Ìû: 1
- Ó¦Öú: 12 (СѧÉú)
- ½ð±Ò: 808.1
- ºì»¨: 5
- Ìû×Ó: 85
- ÔÚÏß: 52.8Сʱ
- ³æºÅ: 1540955
- ×¢²á: 2011-12-17
- ÐÔ±ð: GG
- רҵ: ¼ÆËãÊýѧÓë¿ÆÑ§¹¤³Ì¼ÆËã
5Â¥2013-09-28 13:52:09
×¹ÂäÌìʯ
ľ³æ (СÓÐÃûÆø)
- Ó¦Öú: 1 (Ó×¶ùÔ°)
- ½ð±Ò: 3388.2
- É¢½ð: 1282
- ºì»¨: 4
- Ìû×Ó: 296
- ÔÚÏß: 102.3Сʱ
- ³æºÅ: 2353106
- ×¢²á: 2013-03-17
- רҵ: ÉúÎïÎïÀí¡¢ÉúÎﻯѧÓë·Ö×Ó
6Â¥2013-09-28 19:21:33
×¹ÂäÌìʯ
ľ³æ (СÓÐÃûÆø)
- Ó¦Öú: 1 (Ó×¶ùÔ°)
- ½ð±Ò: 3388.2
- É¢½ð: 1282
- ºì»¨: 4
- Ìû×Ó: 296
- ÔÚÏß: 102.3Сʱ
- ³æºÅ: 2353106
- ×¢²á: 2013-03-17
- רҵ: ÉúÎïÎïÀí¡¢ÉúÎﻯѧÓë·Ö×Ó
7Â¥2013-09-28 22:04:14
![]() |
8Â¥2013-09-29 09:20:55
|
9Â¥2013-09-29 10:53:34
|
10Â¥2013-09-29 16:29:06













»Ø¸´´ËÂ¥
