24小时热门版块排行榜    

查看: 1616  |  回复: 19
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

坠落天石

木虫 (小有名气)

[求助] 用mathematics解方程组

NSolve[{-d^2 - (4 H \[Pi]^2 Sqrt[36 + R^4/H^2] r0^3)/(d^2 m R^2) + (
    4 H \[Pi]^2 r0^3 Sqrt[R^4/H^2 + 4 r0^2])/(
    d^2 m R^2) + (-2 R^2 + 4 Sqrt[R^4 + 4 H^2 r0^2])/(
    4 H k \[Pi] r0^2 + m Sqrt[R^4 + 4 H^2 r0^2]) +
    1/R^2 8 H \[Pi]^2 ((2 Sqrt[2]
           H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(
           6 Sqrt[2] d^2 H m)/Sqrt[
           d^4 m^2 R^4 -
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 -
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2]
           H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(
           6 Sqrt[2] d^2 H m)/Sqrt[
           d^4 m^2 R^4 +
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 +
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2]
           H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2]
           r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[
           
           d^4 m^2 R^4 -
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]
           Sqrt[d^4 m^2 R^4 -
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2]
           H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2]
           r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[
           d^4 m^2 R^4 +
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]
           Sqrt[d^4 m^2 R^4 +
           d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) -
    1/R^2 8 H \[Pi]^2 ((2 Sqrt[2]
           H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(
           2 Sqrt[2] d^2 H m r0)/Sqrt[
           d^4 m^2 R^4 -
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 -
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2]
           H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(
           2 Sqrt[2] d^2 H m r0)/Sqrt[
           d^4 m^2 R^4 +
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 +
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2]
           H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2]
           ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[
           d^4 m^2 R^4 -
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          R^4 + 4 H^2 r0^2] Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 -
           d^2 m Sqrt[
            d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2]
           H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2]
           ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[
           d^4 m^2 R^4 +
            d^2 m Sqrt[
             d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[
          R^4 + 4 H^2 r0^2] Sqrt[
          d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[
          d^4 m^2 R^4 +
           d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) +
    1/(d^6 m^3 R^8)
      8 H^2 k \[Pi]^2 r0^3 (d^2 m r0 R^2 (d^2 m r0 R^2 +
          2 \[Pi] (-4 H k + m R^2) r0^3) +
       2 \[Pi]^2 (-4 H k + m R^2)^2 r0^6 Log[
         d^2 m r0 R^2 + \[Pi] (4 H k - m R^2) r0^3]) == 0,
  r0^2 - (144500 R^2)/(240000 a \[Pi] + 5 \[Pi] R^2) == 0}, {a, r0}]
解上面两个方程组,我想得出a与r0之间的关系,但是运行不了结果。我也尝试求数值解,但是
x = {1, 2, 3};
z+x==0;Print[z]
结果不是z={-1,-2,-3}而是
z
z
z
不知道咋回事,求哪位高手帮帮忙!
回复此楼

» 本帖@通知

» 猜你喜欢

已阅   关注TA 给TA发消息 送TA红花 TA的回帖

坠落天石

木虫 (小有名气)

坠落天石: 回帖置顶 2013-10-03 18:58:12
谁能告诉我mathematics怎么解隐函数方程的数值解啊!

比如:x+y=0;当x={0,0.1,0.2,0.3,0.4,……,1.0}
求y的数值解!


怎么求?
17楼2013-10-03 09:36:16
已阅   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 20 个回答

坠落天石

木虫 (小有名气)

CODE:
-28900+(6*H^2*pi^2*r0^3*((555609333788003*r0^6*log(pi*(24*H - 25)*r0^3 + 2167500)*(24*H - 25)^2)/29386339412313374720000000 - (3*pi*r0^3*(24*H - 25))/722500 + 9/2))/112890625+sqrt(1562500 + r0^2)/15000000 + (289*(-((289*atan((2*sqrt(3*pi)*sqrt(1562500 + r0^2)*r0^3)/sqrt(r0^3*(-9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))))/sqrt(r0^3*(-9375000*pi*r0^3 +sqrt(83521 + 87890625000000*pi^2*r0^6)))) + (289*atan((2*sqrt(3*pi)*sqrt(1562500 + r0^2)*r0^3)/sqrt(-r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))))/sqrt(-r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))-((-9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6))*atan((2*r0^4)/sqrt(3125000*r0^6 - (r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))/(3*pi))))/(sqrt(9375000*pi*r0^6 - r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))) - 1/r0^3*sqrt(r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))*atan((2*r0*r0^3)/sqrt(3125000*r0^6 + (r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))/(3*pi)))))/(60000000*sqrt(3*pi)*sqrt(83521 + 87890625000000*pi^2*r0^6))-sqrt(1562500 + 3^2)/15000000 + (289*(-((289*atan((2*sqrt(3*pi)*sqrt(1562500 + 3^2)*r0^3)/sqrt(r0^3*(-9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))))/sqrt(r0^3*(-9375000*pi*r0^3 +sqrt(83521 + 87890625000000*pi^2*r0^6)))) + (289*atan((2*sqrt(3*pi)*sqrt(1562500 + 3^2)*r0^3)/sqrt(-r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))))/sqrt(-r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))- ((-9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6))*atan((2*3*r0^3)/sqrt(3125000*r0^6 - (r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))/(3*pi))))/(sqrt(9375000*pi*r0^6 - r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))) - 1/r0^3*sqrt(r0^3*(9375000*pi*r0^3 + sqrt(83521 + 87890625000000*pi^2*r0^6)))*atan((2*3*r0^3)/sqrt(3125000*r0^6 + (r0^3*sqrt(83521 + 87890625000000*pi^2*r0^6))/(3*pi)))))/(60000000*sqrt(3*pi)*sqrt(83521 + 87890625000000*pi^2*r0^6))-((1250/(H^2*r0^2 + 1562500)^(1/2) - 2)*(2*pi*r0^2 - 57800))/(((H^2*r0^2 + 1562500)^(1/2)*(pi*r0^2 - 28900))/(120*H*pi*r0^2) - 1)=0

这是matlab中第一个式子的形式,
谢谢各位大神了!
2楼2013-09-28 10:02:38
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

坠落天石

木虫 (小有名气)

CODE:
NSolve[{-d^2 - (4 H \[Pi]^2 Sqrt[36 + R^4/H^2] r0^3)/(d^2 m R^2) + ( 4 H \[Pi]^2 r0^3 Sqrt[R^4/H^2 + 4 r0^2])/( d^2 m R^2) + (-2 R^2 + 4 Sqrt[R^4 + 4 H^2 r0^2])/( 4 H k \[Pi] r0^2 + m Sqrt[R^4 + 4 H^2 r0^2]) + 1/R^2 8 H \[Pi]^2 ((2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(6 Sqrt[2] d^2 H m)/Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[  d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[(6 Sqrt[2] d^2 H m)/Sqrt[d^4 m^2 R^4 + d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[d^4 m^2 R^4 +d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2] H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2] r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[d^4 m^2 R^4 -  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]Sqrt[d^4 m^2 R^4 -  d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2] H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2] r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[ d^4 m^2 R^4 +  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ 36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[d^4 m^2 R^4 +  d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) -  1/R^2 8 H \[Pi]^2 ((2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 2 Sqrt[2] d^2 H m r0)/Sqrt[ d^4 m^2 R^4 -  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[  d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 -  d^2 m Sqrt[  d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 2 Sqrt[2] d^2 H m r0)/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 +  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2] H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2] ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[ d^4 m^2 R^4 -  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[  R^4 + 4 H^2 r0^2] Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[  d^4 m^2 R^4 -  d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2] H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2] ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ R^4 + 4 H^2 r0^2] Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 +  d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) +  1/(d^6 m^3 R^8) 8 H^2 k \[Pi]^2 r0^3 (d^2 m r0 R^2 (d^2 m r0 R^2 + 2 \[Pi] (-4 H k + m R^2) r0^3) +  2 \[Pi]^2 (-4 H k + m R^2)^2 r0^6 Log[ d^2 m r0 R^2 + \[Pi] (4 H k - m R^2) r0^3]) == 0,  r0^2 - (144500 R^2)/(240000 a \[Pi] + 5 \[Pi] R^2) == 0}, {a, r0}](

这是mathematics中的源程序
3楼2013-09-28 10:14:59
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

chyanog

金虫 (小有名气)

你的H,k,R都不给出具体值的话用NSolve是不行的
5楼2013-09-28 13:52:09
已阅   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见