| 查看: 1616 | 回复: 19 | ||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||
坠落天石木虫 (小有名气)
|
[求助]
用mathematics解方程组
|
|
|
NSolve[{-d^2 - (4 H \[Pi]^2 Sqrt[36 + R^4/H^2] r0^3)/(d^2 m R^2) + ( 4 H \[Pi]^2 r0^3 Sqrt[R^4/H^2 + 4 r0^2])/( d^2 m R^2) + (-2 R^2 + 4 Sqrt[R^4 + 4 H^2 r0^2])/( 4 H k \[Pi] r0^2 + m Sqrt[R^4 + 4 H^2 r0^2]) + 1/R^2 8 H \[Pi]^2 ((2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 6 Sqrt[2] d^2 H m)/Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 6 Sqrt[2] d^2 H m)/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2] H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2] r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ 36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2] H^4 k^2 \[Pi]^2 Sqrt[(36 H^2 + R^4)/H^2] r0^9 ArcTanh[(Sqrt[2] d^2 m Sqrt[36 H^2 + R^4])/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ 36 H^2 + R^4] Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[d^4 m^2 R^4 + d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) - 1/R^2 8 H \[Pi]^2 ((2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 - Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 2 Sqrt[2] d^2 H m r0)/Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (2 Sqrt[2] H k \[Pi] r0^6 (d^2 m R^4 + Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]) ArcTan[( 2 Sqrt[2] d^2 H m r0)/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) + (32 Sqrt[2] H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2] ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ R^4 + 4 H^2 r0^2] Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 - d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]) - (32 Sqrt[2] H^4 k^2 \[Pi]^2 r0^9 Sqrt[(R^4 + 4 H^2 r0^2)/H^2] ArcTanh[(Sqrt[2] d^2 m Sqrt[R^4 + 4 H^2 r0^2])/Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]]])/(d^2 m Sqrt[ R^4 + 4 H^2 r0^2] Sqrt[ d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6] Sqrt[ d^4 m^2 R^4 + d^2 m Sqrt[d^4 m^2 R^8 + 256 H^4 k^2 \[Pi]^2 r0^6]])) + 1/(d^6 m^3 R^8) 8 H^2 k \[Pi]^2 r0^3 (d^2 m r0 R^2 (d^2 m r0 R^2 + 2 \[Pi] (-4 H k + m R^2) r0^3) + 2 \[Pi]^2 (-4 H k + m R^2)^2 r0^6 Log[ d^2 m r0 R^2 + \[Pi] (4 H k - m R^2) r0^3]) == 0, r0^2 - (144500 R^2)/(240000 a \[Pi] + 5 \[Pi] R^2) == 0}, {a, r0}] 解上面两个方程组,我想得出a与r0之间的关系,但是运行不了结果。我也尝试求数值解,但是 x = {1, 2, 3}; z+x==0;Print[z] 结果不是z={-1,-2,-3}而是 z z z 不知道咋回事,求哪位高手帮帮忙! |
walk1997
金虫 (著名写手)
- 应助: 1 (幼儿园)
- 金币: 4676.2
- 红花: 22
- 帖子: 1066
- 在线: 798.1小时
- 虫号: 416039
- 注册: 2007-06-29
- 性别: GG
- 专业: 粒子物理学和场论
18楼2013-10-03 17:54:01
坠落天石
木虫 (小有名气)
- 应助: 1 (幼儿园)
- 金币: 3388.2
- 散金: 1282
- 红花: 4
- 帖子: 296
- 在线: 102.3小时
- 虫号: 2353106
- 注册: 2013-03-17
- 专业: 生物物理、生物化学与分子
2楼2013-09-28 10:02:38
坠落天石
木虫 (小有名气)
- 应助: 1 (幼儿园)
- 金币: 3388.2
- 散金: 1282
- 红花: 4
- 帖子: 296
- 在线: 102.3小时
- 虫号: 2353106
- 注册: 2013-03-17
- 专业: 生物物理、生物化学与分子
3楼2013-09-28 10:14:59
5楼2013-09-28 13:52:09













回复此楼