版块导航
正在加载中...
客户端APP下载
论文辅导
申博辅导
登录
注册
帖子
帖子
用户
本版
应《网络安全法》要求,自2017年10月1日起,未进行实名认证将不得使用互联网跟帖服务。为保障您的帐号能够正常使用,请尽快对帐号进行手机号验证,感谢您的理解与支持!
24小时热门版块排行榜
>
论坛更新日志
(3143)
>
虫友互识
(320)
>
导师招生
(173)
>
文献求助
(169)
>
休闲灌水
(88)
>
硕博家园
(73)
>
博后之家
(67)
>
教师之家
(53)
>
招聘信息布告栏
(46)
>
考博
(42)
>
论文投稿
(42)
>
绿色求助(高悬赏)
(27)
>
基金申请
(25)
>
考研
(23)
>
论文道贺祈福
(20)
>
公派出国
(20)
小木虫论坛-学术科研互动平台
»
材料区
»
功能材料
»
基础研究
»
【交流】所有的二次型哈密顿量都能对角化吗?
12
1/1
返回列表
查看: 2809 | 回复: 11
只看楼主
@他人
存档
新回复提醒
(忽略)
收藏
在APP中查看
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
[交流]
【交流】所有的二次型哈密顿量都能对角化吗?
各位大虾,请问一下,是不是所有的二次型哈密顿量都能对角化?
对称的哈密顿量矩阵一定能对角化吗?
回复此楼
» 猜你喜欢
垃圾破二本职称评审标准
已经有17人回复
职称评审没过,求安慰
已经有30人回复
回收溶剂求助
已经有6人回复
投稿Elsevier的Neoplasia杂志,到最后选publishing options时页面空白,不能完成投稿
已经有22人回复
申请26博士
已经有5人回复
EST投稿状态问题
已经有7人回复
毕业后当辅导员了,天天各种学生超烦
已经有4人回复
聘U V热熔胶研究人员
已经有10人回复
求助文献
已经有3人回复
投稿返修后收到这样的回复,还有希望吗
已经有8人回复
高级回复
» 本主题相关价值贴推荐,对您同样有帮助:
海森堡哈密顿量中的因子2
已经有4人回复
一维无限长原子链哈密顿矩阵怎么表示?
已经有6人回复
看看如下哈密顿量如何进一步处理
已经有4人回复
关于量子光学中的哈密顿量问题。
已经有7人回复
【求助】请教一个与自旋有关的哈密顿矩阵,锯齿形石墨
已经有4人回复
» 抢金币啦!回帖就可以得到:
查看全部散金贴
DIY科研工具交流
+
1
/216
新加坡国立大学张阳教授课题组招聘博士后(AI与生物医学方向)
+
1
/184
接样SEM/XPS/XRD/FTIR/BET等多种测试/提供预存服务
+
1
/89
双一流南京医科大学招计算机、AI、统计、生物信息等方向26年9月入学博士
+
1
/86
中国科学院山西煤炭化学研究所水污染防治与资源化利用方向招本科/硕士线上实习生
+
1
/83
哈工大深圳校区 博士招生 燃料电池/电解制氢
+
1
/32
南京-栖霞区-尧化门附件有房子出租吗?
+
1
/32
上海大学昝鹏教授、军事医学研究院伯晓晨研究员/倪铭副研究员 课题组招聘博士生
+
2
/24
广东以色列理工学院招聘博士后(壁面湍流的数据同化)
+
1
/23
求租南京-栖霞区-尧化门附件有虫友有房子要往外出租吗?来个一室的就行。
+
1
/22
澳门科技大学药学院诚招2026年秋季药剂学/生物材料方向博士研究生
+
1
/18
杭州师范大学心理系赛李阳课题组招收2026年学术学位博士研究生
+
1
/9
海南师范大学招收化学博士(光电功能材料课题组招收博士研究生)
+
1
/8
广东以色列理工学院招聘博士后(风电场流动的计算流体力学)
+
1
/7
诚邀博士后合作研究人员
+
1
/5
求一种水性聚氨酯固化剂
+
1
/3
2026年-中国科学院环境分析化学方向“申请考核”博士生
+
1
/2
2026年3月份 博士 申请 考核
+
1
/2
电子科技大学能源材料界面课题组2026年博士生招生
+
1
/1
微生物药物合成生物学方向---上海师范大学2026年博士研究生招生
+
1
/1
1楼
2010-08-24 16:13:15
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
回帖支持 ( 显示支持度最高的前 50 名 )
earthwater
铜虫
(初入文坛)
应助: 0
(幼儿园)
金币: 799.9
帖子: 23
在线: 54.9小时
虫号: 1118788
引用回帖:
Originally posted by
hznu2007
at 2010-12-16 19:36:07:
转置等于自己就是对称矩阵,书上是有说对称性矩阵是可以对角化的。
但是,任何形式的哈密顿量在理论上都可以严格对角化?这个小弟确实很想问问清楚!!!谢谢,大虾解答
我觉得是这样的,哈密顿算符是厄密算符,在一个选定的表象中的矩阵形式就是厄密矩阵,所以它肯定是可以对角化的。
这个哈密顿矩阵的大小就要看你选的表象的维数了。
我前段时间在紧束缚方法计算能带,所以就举那里的例子吧。
比如,有10个原子的体系。
当哈密顿算符是'单体算符'时,也就是单电子近似的。此时的表象可以选取为各个原子处的轨道。再考虑自旋,这个表象的维数是20。
当哈密顿算符是多体算符,比如考虑下Hubbard模型。再假设电子数目有10个,此时的表象选取应该是 这10个电子占据那20个原子轨道的所有的可能状态 这个组合总共有20C10=184756 可见此时的表象维数是18万,哈密顿矩阵也就是18万的方阵了。
[
Last edited by earthwater on 2010-12-17 at 10:24
]
赞
一下
(1人)
回复此楼
11楼
2010-12-17 10:22:11
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
普通回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
哪位牛人帮忙解答一下???谢谢
赞
一下
回复此楼
2楼
2010-08-24 17:54:50
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
哪位高手进来交流一下,解答一下啊!热切期盼中。。。。。
赞
一下
回复此楼
3楼
2010-08-27 16:31:45
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
zonkel
铜虫
(小有名气)
应助: 2
(幼儿园)
金币: 28.5
帖子: 121
在线: 61.1小时
虫号: 330217
★ ★ ★ ★ ★ ★
夕阳西下(金币+1):鼓励 2010-08-28 15:36:02
hznu2007(金币+5): 2010-09-24 17:50:12
hznu2007(金币+1):谢谢参与交流! 2010-12-14 20:13:50
GrasaVampiro(金币+5): 2010-12-16 21:57:19
引用回帖:
Originally posted by
hznu2007
at 2010-08-24 16:13:15:
各位大虾,请问一下,是不是所有的二次型哈密顿量都能对角化?
对称的哈密顿量矩阵一定能对角化吗?
哈密顿量是都能对角化的,这个建议楼主多学学量子力学,这是基本的,如果它不能对角话,它描述的就不是一个物理系统。对称的哈密顿量矩阵一定能对角化,所有的对称矩阵都是可以对角化的,建议楼主好好学习学习群论,上面有如何对角化,如何计算变换矩阵。
赞
一下
(2人)
回复此楼
4楼
2010-08-28 09:55:42
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
请问上面的大虾,是说二次型的哈密顿量都能对角化,还是所有任何形式的哈密顿量都能对角化,谢谢。
赞
一下
回复此楼
5楼
2010-12-14 20:00:34
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
如果大虾是说所有的二次型的哈密顿量都能对角化,那请大虾帮忙列几种比较有用的变换。如果大虾是说所有任何形式的哈密顿量都能对角化,那么四算符的哈密顿量不做平均场或任何近似就直接能对角化?请大虾也举例一下。请大虾解答一下,谢谢!
赞
一下
回复此楼
6楼
2010-12-14 20:07:35
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
earthwater
铜虫
(初入文坛)
应助: 0
(幼儿园)
金币: 799.9
帖子: 23
在线: 54.9小时
虫号: 1118788
★ ★ ★ ★ ★
hznu2007(金币+2): 2010-12-16 15:59:54
GrasaVampiro(金币+5): 2010-12-16 21:57:51
1、哈密顿算符是厄密的,也就是转置共轭等于他自己,这样的矩阵肯定可以对角化的。我没学过群论,学过线性代数的也知道这个结论。
2、你所谓的'二次型的哈密顿量‘是什么意思?
3、四算符的哈密顿量不做平均场或任何近似就直接能对角化,但是会很庞大的矩阵,典型的都是几十万到几百万的大型稀疏矩阵。这样来对角化叫做严格的对角化,(相对于平均场近似而言)。
赞
一下
(1人)
回复此楼
7楼
2010-12-15 09:31:18
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
引用回帖:
Originally posted by
hznu2007
at 2010-12-14 20:07:35:
如果大虾是说所有的二次型的哈密顿量都能对角化,那请大虾帮忙列几种比较有用的变换。如果大虾是说所有任何形式的哈密顿量都能对角化,那么四算符的哈密顿量不做平均场或任何近似就直接能对角化?请大虾也举例一下 ...
你的意思是所有的哈密顿量在理论上都能对角化,只是实际处理中复杂或简单的问题。
赞
一下
回复此楼
8楼
2010-12-16 19:07:27
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
你的意思是说理论上哈密顿量是都可以对角化的,只是在实际处理中哈密顿量要精确对角化会存在很繁琐的推导过程?
赞
一下
回复此楼
9楼
2010-12-16 19:10:20
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
转置等于自己就是对称矩阵,书上是有说对称性矩阵是可以对角化的。
但是,任何形式的哈密顿量在理论上都可以严格对角化?这个小弟确实很想问问清楚!!!谢谢,大虾解答
赞
一下
回复此楼
10楼
2010-12-16 19:36:07
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
关于哈密顿量对角化的问题,我还有个问题,《群论及其在固体物理中的应用》,p40也说由于任何厄米矩阵都可以通过一个幺正的相似变换变为对角矩阵。这就是说哈密顿量是厄米矩阵就是可以对角化。再看李正中的《固体理论》,第三章的双格子自旋波哈密顿量,P78,由于算符是玻色子,哈密顿量H的转置共轭不等于本身,也就是说不是厄米的,书上用bogoliubov正则变换。那么在处理多体问题的时候,哈密顿量为4*4矩阵,反对角线出现系数,也能变换到对角化吗?或者说处理多体问题的哈密顿量都能对角化?哪位大侠解读一下?
赞
一下
回复此楼
12楼
2012-11-06 19:47:31
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
相关版块跳转
材料综合
材料工程
微米和纳米
晶体
金属
无机非金属
生物材料
功能材料
复合材料
我要订阅楼主
hznu2007
的主题更新
12
1/1
返回列表
如果回帖内容含有宣传信息,请如实选中。否则帐号将被全论坛禁言
普通表情
龙
兔
虎
猫
高级回复
(可上传附件)
百度网盘
|
360云盘
|
千易网盘
|
华为网盘
在新窗口页面中打开自己喜欢的网盘网站,将文件上传后,然后将下载链接复制到帖子内容中就可以了。
信息提示
关闭
请填处理意见
关闭
确定