版块导航
正在加载中...
客户端APP下载
论文辅导
申博辅导
登录
注册
帖子
帖子
用户
本版
应《网络安全法》要求,自2017年10月1日起,未进行实名认证将不得使用互联网跟帖服务。为保障您的帐号能够正常使用,请尽快对帐号进行手机号验证,感谢您的理解与支持!
24小时热门版块排行榜
>
论坛更新日志
(561)
>
导师招生
(47)
>
虫友互识
(37)
>
招聘信息布告栏
(12)
>
博后之家
(11)
>
硕博家园
(10)
>
考博
(10)
>
考研
(7)
>
论文道贺祈福
(6)
>
公派出国
(5)
>
教师之家
(4)
>
找工作
(4)
>
基金申请
(3)
>
论文投稿
(3)
>
数理科学综合
(2)
>
第一性原理
(2)
小木虫论坛-学术科研互动平台
»
材料区
»
功能材料
»
基础研究
»
【交流】所有的二次型哈密顿量都能对角化吗?
12
1/1
返回列表
查看: 2748 | 回复: 11
只看楼主
@他人
存档
新回复提醒
(忽略)
收藏
在APP中查看
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
[交流]
【交流】所有的二次型哈密顿量都能对角化吗?
各位大虾,请问一下,是不是所有的二次型哈密顿量都能对角化?
对称的哈密顿量矩阵一定能对角化吗?
回复此楼
» 猜你喜欢
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
孩子确诊有中度注意力缺陷
已经有6人回复
2026博士申请-功能高分子,水凝胶方向
已经有6人回复
论文投稿,期刊推荐
已经有4人回复
硕士和导师闹得不愉快
已经有13人回复
请问2026国家基金面上项目会启动申2停1吗
已经有5人回复
同一篇文章,用不同账号投稿对编辑决定是否送审有没有影响?
已经有3人回复
高级回复
» 本主题相关价值贴推荐,对您同样有帮助:
海森堡哈密顿量中的因子2
已经有4人回复
一维无限长原子链哈密顿矩阵怎么表示?
已经有6人回复
看看如下哈密顿量如何进一步处理
已经有4人回复
关于量子光学中的哈密顿量问题。
已经有7人回复
【求助】请教一个与自旋有关的哈密顿矩阵,锯齿形石墨
已经有4人回复
» 抢金币啦!回帖就可以得到:
查看全部散金贴
华东师范大学 程义云 课题组招2026年博士研究生 - 有机化学、材料化学、高分子合成等
+
1
/80
华中科技大学2026级申请考核制博士生1名-新型共轭MOF/COF合成及其超电应用方向
+
1
/79
招贤纳博(已结束)
+
1
/75
Call for papers,征稿
+
1
/70
北京化工大学生命科学与技术学院岗位招聘信息
+
1
/65
双一流大学湘潭大学“化工过程模拟与强化”国家地方联合工程研究中心招收各类博士生
+
1
/40
燕山大学2026级考核制博士招生——电容去离子方向(超级电容器衍生应用)
+
1
/37
青岛大学 丁欣 课题组 招收2026秋化学博士1名
+
1
/34
捷克布拉格查理大学(QS260)招收第一性原理计算博士生
+
1
/32
宁波大学张天宇教授课题组招聘副教授/讲师
+
1
/29
【宁德时代招聘】电化学科学家
+
1
/28
中国科大-合肥国家实验室冷原子量子中继团队招聘启事
+
2
/12
美国圣母大学张艳良教授诚招全奖博士生
+
2
/8
湖南大学2026博士招生
+
1
/8
东莞理工学院-大连化物所联合招聘光催化方向博士后2名(年薪48W)
+
1
/6
欢迎报考中山大学课题组,确保2025-2026级硕士研究生名额
+
1
/5
有没有一款可以听文献的APP
+
1
/4
北京理工大学珠海校区徐先臣课题组招聘博士后/硕博士
+
1
/2
上海交通大学 张峻课题组招收2026年申请考核博士生1 名
+
1
/1
内蒙古大学青年长江学者王蕾教授课题组2026年博士招聘,2-3人
+
1
/1
1楼
2010-08-24 16:13:15
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
回帖支持 ( 显示支持度最高的前 50 名 )
earthwater
铜虫
(初入文坛)
应助: 0
(幼儿园)
金币: 799.9
帖子: 23
在线: 54.9小时
虫号: 1118788
引用回帖:
Originally posted by
hznu2007
at 2010-12-16 19:36:07:
转置等于自己就是对称矩阵,书上是有说对称性矩阵是可以对角化的。
但是,任何形式的哈密顿量在理论上都可以严格对角化?这个小弟确实很想问问清楚!!!谢谢,大虾解答
我觉得是这样的,哈密顿算符是厄密算符,在一个选定的表象中的矩阵形式就是厄密矩阵,所以它肯定是可以对角化的。
这个哈密顿矩阵的大小就要看你选的表象的维数了。
我前段时间在紧束缚方法计算能带,所以就举那里的例子吧。
比如,有10个原子的体系。
当哈密顿算符是'单体算符'时,也就是单电子近似的。此时的表象可以选取为各个原子处的轨道。再考虑自旋,这个表象的维数是20。
当哈密顿算符是多体算符,比如考虑下Hubbard模型。再假设电子数目有10个,此时的表象选取应该是 这10个电子占据那20个原子轨道的所有的可能状态 这个组合总共有20C10=184756 可见此时的表象维数是18万,哈密顿矩阵也就是18万的方阵了。
[
Last edited by earthwater on 2010-12-17 at 10:24
]
赞
一下
(1人)
回复此楼
11楼
2010-12-17 10:22:11
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
普通回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
哪位牛人帮忙解答一下???谢谢
赞
一下
回复此楼
2楼
2010-08-24 17:54:50
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
哪位高手进来交流一下,解答一下啊!热切期盼中。。。。。
赞
一下
回复此楼
3楼
2010-08-27 16:31:45
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
zonkel
铜虫
(小有名气)
应助: 2
(幼儿园)
金币: 28.5
帖子: 121
在线: 61.1小时
虫号: 330217
★ ★ ★ ★ ★ ★
夕阳西下(金币+1):鼓励 2010-08-28 15:36:02
hznu2007(金币+5): 2010-09-24 17:50:12
hznu2007(金币+1):谢谢参与交流! 2010-12-14 20:13:50
GrasaVampiro(金币+5): 2010-12-16 21:57:19
引用回帖:
Originally posted by
hznu2007
at 2010-08-24 16:13:15:
各位大虾,请问一下,是不是所有的二次型哈密顿量都能对角化?
对称的哈密顿量矩阵一定能对角化吗?
哈密顿量是都能对角化的,这个建议楼主多学学量子力学,这是基本的,如果它不能对角话,它描述的就不是一个物理系统。对称的哈密顿量矩阵一定能对角化,所有的对称矩阵都是可以对角化的,建议楼主好好学习学习群论,上面有如何对角化,如何计算变换矩阵。
赞
一下
(2人)
回复此楼
4楼
2010-08-28 09:55:42
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
请问上面的大虾,是说二次型的哈密顿量都能对角化,还是所有任何形式的哈密顿量都能对角化,谢谢。
赞
一下
回复此楼
5楼
2010-12-14 20:00:34
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
如果大虾是说所有的二次型的哈密顿量都能对角化,那请大虾帮忙列几种比较有用的变换。如果大虾是说所有任何形式的哈密顿量都能对角化,那么四算符的哈密顿量不做平均场或任何近似就直接能对角化?请大虾也举例一下。请大虾解答一下,谢谢!
赞
一下
回复此楼
6楼
2010-12-14 20:07:35
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
earthwater
铜虫
(初入文坛)
应助: 0
(幼儿园)
金币: 799.9
帖子: 23
在线: 54.9小时
虫号: 1118788
★ ★ ★ ★ ★
hznu2007(金币+2): 2010-12-16 15:59:54
GrasaVampiro(金币+5): 2010-12-16 21:57:51
1、哈密顿算符是厄密的,也就是转置共轭等于他自己,这样的矩阵肯定可以对角化的。我没学过群论,学过线性代数的也知道这个结论。
2、你所谓的'二次型的哈密顿量‘是什么意思?
3、四算符的哈密顿量不做平均场或任何近似就直接能对角化,但是会很庞大的矩阵,典型的都是几十万到几百万的大型稀疏矩阵。这样来对角化叫做严格的对角化,(相对于平均场近似而言)。
赞
一下
(1人)
回复此楼
7楼
2010-12-15 09:31:18
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
引用回帖:
Originally posted by
hznu2007
at 2010-12-14 20:07:35:
如果大虾是说所有的二次型的哈密顿量都能对角化,那请大虾帮忙列几种比较有用的变换。如果大虾是说所有任何形式的哈密顿量都能对角化,那么四算符的哈密顿量不做平均场或任何近似就直接能对角化?请大虾也举例一下 ...
你的意思是所有的哈密顿量在理论上都能对角化,只是实际处理中复杂或简单的问题。
赞
一下
回复此楼
8楼
2010-12-16 19:07:27
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
你的意思是说理论上哈密顿量是都可以对角化的,只是在实际处理中哈密顿量要精确对角化会存在很繁琐的推导过程?
赞
一下
回复此楼
9楼
2010-12-16 19:10:20
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
转置等于自己就是对称矩阵,书上是有说对称性矩阵是可以对角化的。
但是,任何形式的哈密顿量在理论上都可以严格对角化?这个小弟确实很想问问清楚!!!谢谢,大虾解答
赞
一下
回复此楼
10楼
2010-12-16 19:36:07
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
hznu2007
铁虫
(初入文坛)
应助: 0
(幼儿园)
金币: 33.2
帖子: 47
在线: 29.1小时
虫号: 658352
关于哈密顿量对角化的问题,我还有个问题,《群论及其在固体物理中的应用》,p40也说由于任何厄米矩阵都可以通过一个幺正的相似变换变为对角矩阵。这就是说哈密顿量是厄米矩阵就是可以对角化。再看李正中的《固体理论》,第三章的双格子自旋波哈密顿量,P78,由于算符是玻色子,哈密顿量H的转置共轭不等于本身,也就是说不是厄米的,书上用bogoliubov正则变换。那么在处理多体问题的时候,哈密顿量为4*4矩阵,反对角线出现系数,也能变换到对角化吗?或者说处理多体问题的哈密顿量都能对角化?哪位大侠解读一下?
赞
一下
回复此楼
12楼
2012-11-06 19:47:31
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
相关版块跳转
材料综合
材料工程
微米和纳米
晶体
金属
无机非金属
生物材料
功能材料
复合材料
我要订阅楼主
hznu2007
的主题更新
12
1/1
返回列表
如果回帖内容含有宣传信息,请如实选中。否则帐号将被全论坛禁言
普通表情
龙
兔
虎
猫
高级回复
(可上传附件)
百度网盘
|
360云盘
|
千易网盘
|
华为网盘
在新窗口页面中打开自己喜欢的网盘网站,将文件上传后,然后将下载链接复制到帖子内容中就可以了。
信息提示
关闭
请填处理意见
关闭
确定