| 查看: 3591 | 回复: 125 | |||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||||
hylpy专家顾问 (知名作家)
|
[交流]
试求数列极限,散金
|
||||
|
证明:数列 要求答题采用LATEX文本。非LATEX文本,无效。 [ Last edited by hylpy on 2015-11-19 at 08:30 ] |
» 猜你喜欢
求助:我三月中下旬出站,青基依托单位怎么办?
已经有9人回复
Cas 72-43-5需要30g,定制合成,能接单的留言
已经有8人回复
北京211副教授,35岁,想重新出发,去国外做博后,怎么样?
已经有8人回复
磺酰氟产物,毕不了业了!
已经有5人回复
论文终于录用啦!满足毕业条件了
已经有25人回复
2026年机械制造与材料应用国际会议 (ICMMMA 2026)
已经有3人回复
自荐读博
已经有3人回复
不自信的我
已经有5人回复
投稿Elsevier的杂志(返修),总是在选择OA和subscription界面被踢皮球
已经有8人回复
» 抢金币啦!回帖就可以得到:
北京理工大学郑长松教授课题组诚招2026年秋季博士/硕士研究生
+3/371
供应德国EXAKT艾卡特半导体导热散热材料三辊研磨机50 PLUS
+1/86
成都理工大学全国重点实验室公开诚聘绿色有机合成方向联培生及科研助理
+1/78
山东征女友,坐标济南
+1/60
昆明理工大学冶能院离子液体冶金课题组招收博士
+1/58
87 年东北小哥定居苏州(沪杭亦可),诚寻携手余生的你
+1/55
国重点实验室双一流A类长江学者团队招2026年全日制博士1-2名/博后1-2名
+2/44
可以用同一个研究内容申请青C和博士后面上吗
+1/25
SCI,计算机相关可以写
+1/18
2026年黄河科技学院纳米功能材料研究所招聘
+2/16
SCI,计算机相关可以写
+1/14
SCI计算机相关论文
+1/11
长江学者团队招聘药学/生物信息学等方向高校教师7名(地点杭州、有事业编)+博后5名
+1/9
香港科技大学 Abhishek Kumar Srivastava 教授课题组 招收博士生
+2/8
中科院深圳理工大学网络课题组招聘博后/RA/实习生
+1/7
2026 博士自荐-机器人机构学方向
+1/7
【博士后/科研助理招聘-北京理工大学-集成电路与电子学院-国家杰青团队】
+1/6
浙江大学傅杰团队(杰青)高薪招聘博士后
+1/5
土木、交通工程专业博士后站有吗?(无博士毕业3年要求+可接受兼职博后)
+1/1
海南大学化学院—功能分子器件团队2026博士/研究助理招生
+1/1
117楼2015-11-19 18:31:19
★ ★ ★ ★ ★ ★ ★ ★
小木虫: 金币+0.5, 给个红包,谢谢回帖
hylpy: 金币+2, 如果重新编一下,就更好了 2015-11-15 19:15:57
Edstrayer: 金币+5, Latex源文件编译通过,但不符合小木虫论坛的格式,鼓励一下 2015-11-16 17:25:39
小木虫: 金币+0.5, 给个红包,谢谢回帖
hylpy: 金币+2, 如果重新编一下,就更好了 2015-11-15 19:15:57
Edstrayer: 金币+5, Latex源文件编译通过,但不符合小木虫论坛的格式,鼓励一下 2015-11-16 17:25:39
|
我在LATEX里面编辑的,所以只有代码 要睡觉了,所以格式也没改,见谅 其实思路就是用单调有界数列必有极限这个准则 GOOD NIGHT \documentclass{article} \usepackage{amsmath} \usepackage{amssymb} \begin{document} \par{$$\because 0<a_{1}<7,0<a_{2}<7$$} \par{$$\because a_{n+2}=\sqrt{7-\sqrt{7+a_{n}}}$$} \par{$$\therefore 0<a_{2n+1}<7,0<a_{2n+1}<7$$} \par{$$\therefore 0<a_{n}<7$$} \par{$$\therefore \{a_{n}\} is\quad bounded.$$} \par{quad} \par{$$\because a_{n+2}=\sqrt{7-\sqrt{7+a_{n}}}$$} \par{$$\therefore a_{4n+i}-a_{4(n-1)+i}=\sqrt{7-\sqrt{7+a_{4n+i-2}}}-\sqrt{7-\sqrt{7+a_{4(n-1)+i-2}}}=\frac{\sqrt{7+a_{4(n-1)+i-2}}-\sqrt{7+a_{4n+i-2}}}{a_{4n+i}+a_{4(n-1)+i}},i=0,1,2,3$$} \par{$$\therefore a_{4n+i}-a_{4(n-1)+i}=k(a_{4(n-1)+i}-a_{4(n-2)+i}),k>0;i=0,1,2,3$$} \par{$$\therefore \{a_{4n+i}\} is\quad monotone\quad decreasing.(i=0,1,2,3)$$} \par{$$\therefore \{a_{4n+i}\} is\quad Convergent\quad sequence.(i=0,1,2,3)$$} \par{\quad} \par{$$Suppose\quad \lim_{n\rightarrow\infty} a_{4n+i}=A$$} \par{$$\because a_{n+2}=\sqrt{7-\sqrt{7+a_{n}}}$$} \par{$$\therefore A=\sqrt{7-\sqrt{7+\sqrt{7-\sqrt{7+A}}}}$$} \par{$$\therefore A=-3,2,\frac{1\pm\sqrt{29}}{2} ......$$} \par{$$\because 0\leq a_{n}\leq\sqrt{7}$$} \par{$$\therefore 0\leq A\leq\sqrt{7}$$} \par{$$\therefore A=2$$} \par{.....} \end{document} |
2楼2015-11-14 23:42:01
★
小木虫: 金币+0.5, 给个红包,谢谢回帖
小木虫: 金币+0.5, 给个红包,谢谢回帖
|
这个证明是错的,中间单调性的分子有理化多了个负号 正确的思路应该是:按下标除以4的余数将原数列分成四个数列,然后可以用上面的方法证明这四个数列的极限都是2,就能得出这个数列的极限是2 PS:我在上面的代码中做了修改,但是16次方程太麻烦了,留待有心人 [ 发自手机版 http://muchong.com/3g ] |
3楼2015-11-15 00:41:42
5楼2015-11-15 02:03:52










回复此楼