limma是可以处理成熟数据的,这是limma里limFit函数的说明文档的一部分:
#
# Simulate gene expression data for 100 probes and 6 microarrays
# Microarray are in two groups
# First two probes are differentially expressed in second group
# Std deviations vary between genes with prior df=4
sd <- 0.3*sqrt(4/rchisq(100,df=4))
y <- matrix(rnorm(100*6,sd=sd),100,6)
rownames(y) <- paste("Gene",1:100)
y[1:2,4:6] <- y[1:2,4:6] + 2
design <- cbind(Grp1=1,Grp2vs1=c(0,0,0,1,1,1))
options(digits=3)
# Ordinary fit
fit <- lmFit(y,design)
fit <- eBayes(fit)
topTable(fit,coef=2)
#
按照你的数据,仿照这个写个code就可以了。