|
|
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ... 感谢参与,应助指数 +1 apollosun9283: 金币+150, ★★★★★最佳答案, 十分感谢! 2012-10-13 09:06:40 xiegangmai: 金币+3 2012-10-14 08:23:29
参考实用计算机模拟书,程序如下,做出来问题,至于效果的话,请楼主调一下k初值:
function canshinihe
clear all;clc
tspan=[0 1/30 1/24 1/18 1/12];
y0=[0.25;0.75;0;0;0;0;0;0];
k0=[1 1 1 1 1 1 1]*0.1;
lb=[0 0 0 0 0 0 0];
ub=[1 1 1 1 1 1 1]*10^5;
yexp=0.01*[2.21 62.89 19.04 6.86 2.34 0.80 0.27 0.02;...
1.82 59.76 20.23 8.07 2.97 1.02 0.33 0.05;...
1.15 55.64 22.27 9.48 3.73 1.34 0.47 0.12;
1.06 55.13 21.85 9.69 3.99 1.59 0.62 0.22];
% 使用函数lsqnonlin()进行参数估计
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
lsqnonlin(@ObjFunc,k0,lb,ub,[],tspan,y0,yexp);
ci = nlparci(k,residual,jacobian);
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
fprintf('\tk1 = %.4f ± %.4f\n',k(1),ci(1,2)-k(1))
fprintf('\tk2 = %.4f ± %.4f\n',k(2),ci(2,2)-k(2))
fprintf('\tk3 = %.4f ± %.4f\n',k(3),ci(3,2)-k(3))
fprintf('\tk4 = %.4f ± %.4f\n',k(4),ci(4,2)-k(4))
fprintf('\tk5 = %.4f ± %.4f\n',k(5),ci(5,2)-k(5))
fprintf('\tk6 = %.4f ± %.4f\n',k(6),ci(6,2)-k(6))
fprintf('\tk7 = %.4f ± %.4f\n',k(7),ci(7,2)-k(7))
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
%---------------------------------------------------------
function f = ObjFunc(k,tspan,y0,yexp) % 目标函数
[t Xsim] = ode45(@KineticsEqs,tspan,y0,[],k);
ysim(:,1) = Xsim(2:end,1);
ysim(:,2) = Xsim(2:end,2);
ysim(:,3) = Xsim(2:end,3);
ysim(:,4) = Xsim(2:end,4);
ysim(:,5) = Xsim(2:end,5);
ysim(:,6) = Xsim(2:end,6);
ysim(:,7) = Xsim(2:end,7);
ysim(:,8) = Xsim(2:end,8);
f =[ysim(:,1)-yexp(:,1); ysim(:,2)-yexp(:,2); ysim(:,3)-yexp(:,3);...
ysim(:,4)-yexp(:,4); ysim(:,5)-yexp(:,5); ysim(:,6)-yexp(:,6);...
ysim(:,7)-yexp(:,7); ysim(:,8)-yexp(:,8)];
%----------------------------------------------------------
function dydt = KineticsEqs(t,y,k)
f1=3*k(1)*y(1)-k(2)*y(1)*y(2)-k(3)*y(1)*y(3)-k(4)*y(1)*y(4)-...
k(5)*y(1)*y(5)-k(6)*y(1)*y(6)-k(7)*y(1);
f2=-1/3*k(2)*76/90*y(1)*y(2);
f3=1/3*k(2)*106/90*y(1)*y(2)-1/3*k(3)*106/90*y(1)*y(3);
f4=1/3*k(3)*136/90*y(1)*y(3)-1/3*k(4)*136/90*y(1)*y(4);
f5=1/3*k(4)*166/90*y(1)*y(4)-1/3*k(5)*166/90*y(1)*y(5);
f6=1/3*k(5)*196/90*y(1)*y(5)-1/3*k(6)*196/90*y(1)*y(6);
f7=1/3*k(6)*226/90*y(1)*y(6)-1/3*k(7)*226/90*y(1);
f8=1/3*k(7)*256/90*y(1);
dydt=[f1;f2;f3;f4;f5;f6;f7;f8]; |
|