24小时热门版块排行榜    

CyRhmU.jpeg
南方科技大学公共卫生及应急管理学院2025级博士研究生招生报考通知
查看: 3697  |  回复: 40
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

yalefield

金虫 (文坛精英)

老汉一枚

[交流] 波函数----并非统计工具而是物理真实 【转】已有14人参与

http://www.edu.cn/ren_yu_zi_ran_ ... 111220_721232.shtml

在《Nature》杂志公布2011年最受欢迎的十大新闻中,排名第6的是:
波函数并非统计工具而是物理真实

  据《自然》杂志网站2011年11月17日报道,波函数是量子力学中一个重要且令人费解的核心概念,物理学家用它来确定量子粒子具备某种特性的概率,而英国科学家2011年11月14日发表在arXiv。org网站的一篇论文则提出了一个新观点:
波函数并非统计工具而是物理真实

  由英国帝国理工学院的马修·皮由兹领导的三人科学小组在最新发表的论文中指出,如果波函数纯粹只是统计工具的话,那么,时间和空间中互不连贯的量子状态都将可以相互“交流”,这听起来有点不可思议,很难成立,因此波函数必定是物理真实。
  研究人员之一、美国南加州克莱姆森大学的理论物理学家安东尼·瓦伦提尼表示:“我们的这篇论文可能具有颠覆效应,在量子力学中,它可能是继贝尔定理之后最重要的结论。”
  英国牛津大学的物理学家戴维·华莱士表示,这个理论是他15年的职业生涯内看到的量子力学基础领域最重要的结论。他说:“这一理论表明,人们不能将量子状态解释为一种概率。”

  自上世纪20年代开始,科学界在如何理解波函数方面就存在很大争议。丹麦最著名的科学家、哥本哈根大学的尼尔斯·玻尔开创的“哥本哈根解释”认为,波函数是一个计算工具:当被用来计算粒子拥有不同特性的可能性时,它能给出正确的结论。
回复此楼

» 收录本帖的淘帖专辑推荐

淘淘 热门前沿研究

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

huangll99

木虫 (职业作家)


小木虫: 金币+0.5, 给个红包,谢谢回帖
这个研究看来造成的轰动不小啊,那么多物理学家都坚称它是对的
5楼2012-04-02 09:34:48
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 41 个回答

yalefield

金虫 (文坛精英)

老汉一枚

Nature网站的报导:

Quantum theorem shakes foundations
http://www.nature.com/news/quant ... -foundations-1.9392
Nature doi:10.1038/nature.2011.9392

The wavefunction is a real physical object after all, say researchers.
Eugenie Samuel Reich
17 November 2011

Mathematical device or physical fact? The elusive nature of the quantum wavefunction may be pinned down at last.

At the heart of the weirdness for which the field of quantum mechanics is famous is the wavefunction, a powerful but mysterious entity that is used to determine the probabilities that quantum particles will have certain properties. Now, a preprint posted online on 14 November1 reopens the question of what the wavefunction represents — with an answer that could rock quantum theory to its core. Whereas many physicists have generally interpreted the wavefunction as a statistical tool that reflects our ignorance of the particles being measured, the authors of the latest paper argue that, instead, it is physically real.

“I don't like to sound hyperbolic, but I think the word 'seismic' is likely to apply to this paper,” says Antony Valentini, a theoretical physicist specializing in quantum foundations at Clemson University in South Carolina.

Valentini believes that this result may be the most important general theorem relating to the foundations of quantum mechanics since Bell’s theorem, the 1964 result in which Northern Irish physicist John Stewart Bell proved that if quantum mechanics describes real entities, it has to include mysterious “action at a distance”.

Action at a distance occurs when pairs of quantum particles interact in such a way that they become entangled. But the new paper, by a trio of physicists led by Matthew Pusey at Imperial College London, presents a theorem showing that if a quantum wavefunction were purely a statistical tool, then even quantum states that are unconnected across space and time would be able to communicate with each other. As that seems very unlikely to be true, the researchers conclude that the wavefunction must be physically real after all.

David Wallace, a philosopher of physics at the University of Oxford, UK, says that the theorem is the most important result in the foundations of quantum mechanics that he has seen in his 15-year professional career. “This strips away obscurity and shows you can’t have an interpretation of a quantum state as probabilistic,” he says.

The debate over how to understand the wavefunction goes back to the 1920s. In the ‘Copenhagen interpretation’ pioneered by Danish physicist Niels Bohr, the wavefunction was considered a computational tool: it gave correct results when used to calculate the probability of particles having various properties, but physicists were encouraged not to look for a deeper explanation of what the wavefunction is.

Albert Einstein also favoured a statistical interpretation of the wavefunction, although he thought that there had to be some other as-yet-unknown underlying reality. But others, such as Austrian physicist Erwin Schrödinger, considered the wavefunction, at least initially, to be a real physical object.

The Copenhagen interpretation later fell out of popularity, but the idea that the wavefunction reflects what we can know about the world, rather than physical reality, has come back into vogue in the past 15 years with the rise of quantum information theory, Valentini says.

Rudolph and his colleagues may put a stop to that trend. Their theorem effectively says that individual quantum systems must “know” exactly what state they have been prepared in, or the results of measurements on them would lead to results at odds with quantum mechanics. They declined to comment while their preprint is undergoing the journal-submission process, but say in their paper that their finding is similar to the notion that an individual coin being flipped in a biased way — for example, so that it comes up 'heads' six out of ten times — has the intrinsic, physical property of being biased, in contrast to the idea that the bias is simply a statistical property of many coin-flip outcomes.

Quantum information

Robert Spekkens, a physicist at the Perimeter Institute for Theoretical Physics in Waterloo, Canada, who has favoured a statistical interpretation of the wavefunction, says that Pusey's theorem is correct and a “fantastic” result, but that he disagrees about what conclusion should be drawn from it. He favours an interpretation in which all quantum states, including non-entangled ones, are related after all.

Spekkens adds that he does expect the theorem to have broader consequences for physics, as have Bell’s and other fundamental theorems. No one foresaw in 1964 that Bell’s theorem would sow the seeds for quantum information theory and quantum cryptography — both of which rely on phenomena that aren’t possible in classical physics. Spekkens thinks this theorem may ultimately have a similar impact. “It’s very important and beautiful in its simplicity,” he says.

[ Last edited by yalefield on 2012-4-2 at 02:13 ]
2楼2012-04-02 02:08:52
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

yalefield

金虫 (文坛精英)

老汉一枚

★ ★
franch: 金币+2, 鼓励交流。。。。。呵呵 2012-04-02 09:58:16
附件是那篇论文。

Matthew F. Pusey, Jonathan Barrett, Terry Rudolph
The quantum state cannot be interpreted statistically
arXiv:1111.3328v1
http://xxx.lanl.gov/abs/1111.3328

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : 1111.3328v1.pdf
  • 2012-04-02 02:10:55, 538.06 K
3楼2012-04-02 02:12:13
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

huangll99

木虫 (职业作家)

4楼2012-04-02 09:13:38
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
普通表情 高级回复(可上传附件)
信息提示
请填处理意见