| 查看: 1284 | 回复: 4 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
[交流]
急求翻译一段话
|
|||
|
The In2O3 based sensor shows different sensing responses towards various gases. The different diffusivities and reactivity of these gases would be the key factors influencing this issue [28]. The gas transport without external pressure can be described by Knudsen diffusion. According the corresponding model, gas transport occurs mainly by molecular diffusion in macropores (with diameter > 25nm), while surface diffusion becomes predominant in micropores (with diameter < 1 nm). In fact, our In2O3-based sensor contains two kind pores: the pore in the In2O3 nanoplatelets (with diameter 2-4 nm), and the larger pores (gaps) between adjacent In2O3 nanoplatelets (with diameter >>25 nm from the observation of SEM image (Fig. 4a)). It is believed that the gas transport in our In2O3 sensor occurs mainly by molecular diffusion. This indicates the analytes may be able to diffuse similar depth into the In2O3 sensing layer. Therefore, the different diffusivities of the analytes in our sensor would slightly contribute to the sensing response. On the other hand, the reactivity of these analytes would be responsible for the obtained sequence of sensing response. From the ionosorption model [29] of oxide semiconductor gas sensor, reducing gases abstract surface-bound oxygen which immobilized the conduction electron, thereby release immobilized electron into the crystal and induce the change of the conductivity of the sensor. These analytes have different ability to abstract surface-bound oxygen, and so showing different sensing response. In addition, the different reaction kinetics of these analytes may be another factor resulting in the different sensing response. We believe that the compositive influence of these aspects of the analytes induces the consequence of the sensing responses. The gas sensing superiority of our prepared porous In2O3 nanoplatelets is easily understood. From the theoretical simulation and experimental results, the sensor response could remarkably increase as the average crystallite size decreased to below 20 nm, which is about twice the thickness of electron depletion layer [30-33]. The thickness of our prepared In2O3 nanoplatelets is below 6 nm, which is much thinner than twice the thickness of electron depletion layer. That is obviously beneficial to the enhancement of sensing performance. Secondly, our prepared In2O3 nanoplatelets are of single crystalline and porous feature. The carrier transport is easy in the single crystalline structure. It is believed that not only the electrons are easily depleted but also the sensor has higher stability owing to the high crystallinity of the sensing materials. Furthermore, bigger accessible surface together with convenient transport of gas can be benefited from the porous structure [28]. Comparatively, the commercial In2O3 with bigger size has much lower sensitivity. Thirdly, the unique 2-D nanostructures are stable [34-36]. They are effective in mitigating the strong agglomeration between nanoplatelets. As revealed by the reported sensing mechanism, the resistance of the sensing film is controlled by the internanocrystal barrier at the contacts, and the sensitivity results mainly from the barrier modulation at the contacts by gas [37]. A distinct characteristic of the sensing film composed of In2O3 nanoplatelets is that most of the contacts between them are face-face contacts, which has large contact area with most of them contributing to the sensing. This is in contrast to other structure such as nanospheres or nanowires [38]. In addition, our prepared In2O3 nanoplatelets are bound by {110} planes with higher energy, which would have higher gas adsorption and reactivity [4, 19, 20]. Therefore, the In2O3 nanoplatelets possess a good sensing performance and would be promising candidates for fabricating high performance gas sensors. |
» 猜你喜欢
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有7人回复
申请2026年博士
已经有5人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有5人回复
寻求一种能扛住强氧化性腐蚀性的容器密封件
已经有6人回复
2025冷门绝学什么时候出结果
已经有7人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有6人回复
Bioresource Technology期刊,第一次返修的时候被退回好几次了
已经有7人回复
请问哪里可以有青B申请的本子可以借鉴一下。
已经有4人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
» 抢金币啦!回帖就可以得到:
我的现状交流,续:老公辞职读博,我一个人白天工作晚上带孩子,真的累啊!
+1/454
坐标深圳,诚征女友
+1/158
加拿大/英属哥伦比亚大学曹彦凯课题组招收全奖博士/博后 [机器学习/优化/控制方向]
+1/84
双一流大学湘潭大学“化工过程模拟与强化”国家地方联合工程研究中心招收各类博士生
+1/63
澳门科技大学2026年数学博士招生—杨钧翔助理教授计算物理与数学课题组
+1/41
都柏林大学微纳制造博士后招聘启事——二
+1/36
广州医科大学招聘微塑料生物毒理纳米材料方向博士后2名
+1/34
今年的函评专家费收到了吗
+1/33
中山大学医学院(深圳)肿瘤细胞生物课题组招收联培(客座)硕士/博士生
+1/30
智慧能源中心招聘启事|博士后 科研助理
+1/30
博士/硕士招生
+1/10
26 申博自荐
+1/10
湖南大学2026博士招生-人工智能安全方向
+1/6
HMDI和PTMEG合成的热熔胶为什么固化不了一直是发粘的
+1/5
想替换掉环状DNA中心通道中的金属离子 如何替换才是正确操作
+1/4
CSC 因斯布鲁克大学计算机系 联培/攻博
+1/3
有没有一款可以听文献的APP
+1/2
招收2026年秋季入学博士生1名(北京科技大学 力学超材料/机器学习/增材制造相关方向)
+1/2
中国科学技术大学 精准智能化学重点实验室 武建昌课题组招聘博士,博士后
+1/1
澳大利亚南昆士兰大学(UniSQ)量子点课题组 招收CSC全奖博士生
+1/1
2楼2011-03-31 17:13:45
3楼2011-04-01 09:24:11
4楼2011-04-01 09:44:28
雪夕(金币+20, 翻译EPI+1): 2011-04-05 10:43:15
|
面对各种气体,氧化铟传感器的传感响应表现均不一样。这些气体的不同的扩散率和反应活性本文的影响都有着重要影响[28]。Knudsen扩散描述了,气体运输不需要外力就可以进行。根据相应的模型、气体运输的发生是通过大孔隙( 直径>25nm)的分子扩散,而表面扩散主要通过微孔的方式扩散(直径< 1纳米)。事实上,我们的氧化铟传感器包含两种气孔:孔隙直径如氧化铟纳米级(2-4纳米),和更大的气孔(空白)相邻氧化铟纳米级 (直径> >25纳米 从观测的扫描电镜照片得出(图4))。此举被认为在我们的氧化铟传感器的气体运输主要是分子扩散的形式。这表明这一过程可以扩散到类似的深度氧化铟感应层。因此,不同的样本扩散率传感器会稍微有助于传感响应。 另一方面,这些样本的反应性将负责在获得传感响应序列。从ionosorption模型(29)的氧化物半导体气敏传感器得知,减少气体中表面范围上提取的氧气,能固定化传导电子,从而释放固定电子进入入晶体和导致电导率传感器的改变。这些样品有不同的能力提取表面范围上的氧气,所以表达不同传感响应。此外,不同的反应动力学的这些样品可能成为另一个因素导致不同的传感响应。我们相信,样品各方面的综合的影响最终导致传感反应的最终结果。 我们准备好的有气孔的纳米级氧化铟的气体传感优势比较通俗易懂。从理论模拟和实验结果表明,该传感器响应可显著的增加。 |
5楼2011-04-03 18:13:46













回复此楼