| 查看: 1379 | 回复: 4 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
[交流]
急求翻译一段话
|
|||
|
The In2O3 based sensor shows different sensing responses towards various gases. The different diffusivities and reactivity of these gases would be the key factors influencing this issue [28]. The gas transport without external pressure can be described by Knudsen diffusion. According the corresponding model, gas transport occurs mainly by molecular diffusion in macropores (with diameter > 25nm), while surface diffusion becomes predominant in micropores (with diameter < 1 nm). In fact, our In2O3-based sensor contains two kind pores: the pore in the In2O3 nanoplatelets (with diameter 2-4 nm), and the larger pores (gaps) between adjacent In2O3 nanoplatelets (with diameter >>25 nm from the observation of SEM image (Fig. 4a)). It is believed that the gas transport in our In2O3 sensor occurs mainly by molecular diffusion. This indicates the analytes may be able to diffuse similar depth into the In2O3 sensing layer. Therefore, the different diffusivities of the analytes in our sensor would slightly contribute to the sensing response. On the other hand, the reactivity of these analytes would be responsible for the obtained sequence of sensing response. From the ionosorption model [29] of oxide semiconductor gas sensor, reducing gases abstract surface-bound oxygen which immobilized the conduction electron, thereby release immobilized electron into the crystal and induce the change of the conductivity of the sensor. These analytes have different ability to abstract surface-bound oxygen, and so showing different sensing response. In addition, the different reaction kinetics of these analytes may be another factor resulting in the different sensing response. We believe that the compositive influence of these aspects of the analytes induces the consequence of the sensing responses. The gas sensing superiority of our prepared porous In2O3 nanoplatelets is easily understood. From the theoretical simulation and experimental results, the sensor response could remarkably increase as the average crystallite size decreased to below 20 nm, which is about twice the thickness of electron depletion layer [30-33]. The thickness of our prepared In2O3 nanoplatelets is below 6 nm, which is much thinner than twice the thickness of electron depletion layer. That is obviously beneficial to the enhancement of sensing performance. Secondly, our prepared In2O3 nanoplatelets are of single crystalline and porous feature. The carrier transport is easy in the single crystalline structure. It is believed that not only the electrons are easily depleted but also the sensor has higher stability owing to the high crystallinity of the sensing materials. Furthermore, bigger accessible surface together with convenient transport of gas can be benefited from the porous structure [28]. Comparatively, the commercial In2O3 with bigger size has much lower sensitivity. Thirdly, the unique 2-D nanostructures are stable [34-36]. They are effective in mitigating the strong agglomeration between nanoplatelets. As revealed by the reported sensing mechanism, the resistance of the sensing film is controlled by the internanocrystal barrier at the contacts, and the sensitivity results mainly from the barrier modulation at the contacts by gas [37]. A distinct characteristic of the sensing film composed of In2O3 nanoplatelets is that most of the contacts between them are face-face contacts, which has large contact area with most of them contributing to the sensing. This is in contrast to other structure such as nanospheres or nanowires [38]. In addition, our prepared In2O3 nanoplatelets are bound by {110} planes with higher energy, which would have higher gas adsorption and reactivity [4, 19, 20]. Therefore, the In2O3 nanoplatelets possess a good sensing performance and would be promising candidates for fabricating high performance gas sensors. |
» 猜你喜欢
有时候真觉得大城市人没有县城人甚至个体户幸福
已经有9人回复
CSC & MSCA 博洛尼亚大学能源材料课题组博士/博士后招生|MSCA经费充足、排名优
已经有6人回复
天津大学招2026.09的博士生,欢迎大家推荐交流(博导是本人)
已经有4人回复
同年申请2项不同项目,第1个项目里不写第2个项目的信息,可以吗
已经有3人回复
退学或坚持读
已经有28人回复
面上项目申报
已经有3人回复
酰胺脱乙酰基
已经有9人回复
博士延得我,科研能力直往上蹿
已经有7人回复
面上基金申报没有其他的参与者成吗
已经有5人回复
遇见不省心的家人很难过
已经有22人回复
» 抢金币啦!回帖就可以得到:
南方医科大学中药学院 申请考核博士一名 (天然药化方向,天然产物分离经验优先)
+1/270
-大龄未婚男找女朋友结婚
+1/258
西南科技大学曹克课题组招收2026级申请考核制有机化学博士研究生
+1/180
山东征女友,坐标济南
+1/64
香港科技大学计算物理及流体力学课题组招收全奖博士后及博士生(2026年9月入学)
+1/33
深圳大学柔性电子材料方向“申请-考核制”博士生招生
+2/26
新加坡 南洋理工大学- 智能光子/ 传感 PHD 全奖一名 2026 - 8 月入学
+1/19
都放假了嘛?
+1/18
南京医科大学国家级高层次青年人才团队招收博士研究生
+1/11
广东工业大学马琳教授课题组招收2026年博士(材料物理与化学、光学专业)
+1/8
联合研究团队招聘博后等青年人才
+1/7
【博士招生】哈工大(深圳)智能学部机器人与先进制造学院 陆文杰老师课题组
+1/4
澳科大招收2026年秋季入学生物材料方向全奖博士研究生(3月5日截止)
+1/4
江汉大学轩亮教授课题组招博士研究生/博士后
+1/4
推荐一款可以AI辅助写作的Latex编辑器SmartLatexEditor,超级好用,AI润色,全免费
+1/3
山东第一医科大学第一附属医院招聘事业编制科研岗
+1/2
求资源
+1/2
海南大学国家优青团队招聘“AI/大数据+材料”方向专任教师(事业编制)
+1/1
上海理工大学“新能源材料”专业-赵斌教授招收申请考核制博士生【能源催化方向】
+1/1
上海理工顾敏院士/李蔚团队招收2026级博士研究生 (集成光学、量子信息方向)
+1/1
2楼2011-03-31 17:13:45
3楼2011-04-01 09:24:11
4楼2011-04-01 09:44:28
雪夕(金币+20, 翻译EPI+1): 2011-04-05 10:43:15
|
面对各种气体,氧化铟传感器的传感响应表现均不一样。这些气体的不同的扩散率和反应活性本文的影响都有着重要影响[28]。Knudsen扩散描述了,气体运输不需要外力就可以进行。根据相应的模型、气体运输的发生是通过大孔隙( 直径>25nm)的分子扩散,而表面扩散主要通过微孔的方式扩散(直径< 1纳米)。事实上,我们的氧化铟传感器包含两种气孔:孔隙直径如氧化铟纳米级(2-4纳米),和更大的气孔(空白)相邻氧化铟纳米级 (直径> >25纳米 从观测的扫描电镜照片得出(图4))。此举被认为在我们的氧化铟传感器的气体运输主要是分子扩散的形式。这表明这一过程可以扩散到类似的深度氧化铟感应层。因此,不同的样本扩散率传感器会稍微有助于传感响应。 另一方面,这些样本的反应性将负责在获得传感响应序列。从ionosorption模型(29)的氧化物半导体气敏传感器得知,减少气体中表面范围上提取的氧气,能固定化传导电子,从而释放固定电子进入入晶体和导致电导率传感器的改变。这些样品有不同的能力提取表面范围上的氧气,所以表达不同传感响应。此外,不同的反应动力学的这些样品可能成为另一个因素导致不同的传感响应。我们相信,样品各方面的综合的影响最终导致传感反应的最终结果。 我们准备好的有气孔的纳米级氧化铟的气体传感优势比较通俗易懂。从理论模拟和实验结果表明,该传感器响应可显著的增加。 |
5楼2011-04-03 18:13:46













回复此楼