| 查看: 1285 | 回复: 4 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
[交流]
急求翻译一段话
|
|||
|
The In2O3 based sensor shows different sensing responses towards various gases. The different diffusivities and reactivity of these gases would be the key factors influencing this issue [28]. The gas transport without external pressure can be described by Knudsen diffusion. According the corresponding model, gas transport occurs mainly by molecular diffusion in macropores (with diameter > 25nm), while surface diffusion becomes predominant in micropores (with diameter < 1 nm). In fact, our In2O3-based sensor contains two kind pores: the pore in the In2O3 nanoplatelets (with diameter 2-4 nm), and the larger pores (gaps) between adjacent In2O3 nanoplatelets (with diameter >>25 nm from the observation of SEM image (Fig. 4a)). It is believed that the gas transport in our In2O3 sensor occurs mainly by molecular diffusion. This indicates the analytes may be able to diffuse similar depth into the In2O3 sensing layer. Therefore, the different diffusivities of the analytes in our sensor would slightly contribute to the sensing response. On the other hand, the reactivity of these analytes would be responsible for the obtained sequence of sensing response. From the ionosorption model [29] of oxide semiconductor gas sensor, reducing gases abstract surface-bound oxygen which immobilized the conduction electron, thereby release immobilized electron into the crystal and induce the change of the conductivity of the sensor. These analytes have different ability to abstract surface-bound oxygen, and so showing different sensing response. In addition, the different reaction kinetics of these analytes may be another factor resulting in the different sensing response. We believe that the compositive influence of these aspects of the analytes induces the consequence of the sensing responses. The gas sensing superiority of our prepared porous In2O3 nanoplatelets is easily understood. From the theoretical simulation and experimental results, the sensor response could remarkably increase as the average crystallite size decreased to below 20 nm, which is about twice the thickness of electron depletion layer [30-33]. The thickness of our prepared In2O3 nanoplatelets is below 6 nm, which is much thinner than twice the thickness of electron depletion layer. That is obviously beneficial to the enhancement of sensing performance. Secondly, our prepared In2O3 nanoplatelets are of single crystalline and porous feature. The carrier transport is easy in the single crystalline structure. It is believed that not only the electrons are easily depleted but also the sensor has higher stability owing to the high crystallinity of the sensing materials. Furthermore, bigger accessible surface together with convenient transport of gas can be benefited from the porous structure [28]. Comparatively, the commercial In2O3 with bigger size has much lower sensitivity. Thirdly, the unique 2-D nanostructures are stable [34-36]. They are effective in mitigating the strong agglomeration between nanoplatelets. As revealed by the reported sensing mechanism, the resistance of the sensing film is controlled by the internanocrystal barrier at the contacts, and the sensitivity results mainly from the barrier modulation at the contacts by gas [37]. A distinct characteristic of the sensing film composed of In2O3 nanoplatelets is that most of the contacts between them are face-face contacts, which has large contact area with most of them contributing to the sensing. This is in contrast to other structure such as nanospheres or nanowires [38]. In addition, our prepared In2O3 nanoplatelets are bound by {110} planes with higher energy, which would have higher gas adsorption and reactivity [4, 19, 20]. Therefore, the In2O3 nanoplatelets possess a good sensing performance and would be promising candidates for fabricating high performance gas sensors. |
» 猜你喜欢
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有7人回复
申请2026年博士
已经有5人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有5人回复
寻求一种能扛住强氧化性腐蚀性的容器密封件
已经有6人回复
2025冷门绝学什么时候出结果
已经有7人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有6人回复
Bioresource Technology期刊,第一次返修的时候被退回好几次了
已经有7人回复
请问哪里可以有青B申请的本子可以借鉴一下。
已经有4人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
» 抢金币啦!回帖就可以得到:
中国地质大学(武汉)杨明教授组招收2026年博士
+2/434
Ei期刊青年编委招募(工程设计方向)
+1/396
双面压敏硅胶胶带
+2/90
燕山大学亚稳材料全国重点实验室2026年硕士/博士研究生招生信息
+1/72
南京理工大学优青课题组招收2026年博士1名(电催化方向)
+2/34
数学与应用数学、非线性动力学、计算流体力学、控制工程、岩石力学相关专业博士招生
+1/32
中南大学冶金与环境学院陈伟老师招收环境科学与工程2026年博士生1人
+1/31
智慧能源中心2026年秋季博士生招生启事
+1/29
同济大学段宁院士徐夫元教授团队:招聘博士后+欢迎依托申报海优
+1/14
博士/硕士招生
+1/9
意大利CSC机器人方向博士招生
+1/7
哈尔滨工业大学(深圳)赵怡潞课题组诚招博士后
+1/7
上海大学长江学者钟云波教授团队招收外场冶金或材料加工方向2026年博士研究生
+1/6
大连工业杰青、长江团队-生物质材料方向招收2026级博士生
+1/5
申博求捞
+1/5
深圳先进院三院院士成会明团队诚聘液流电池/高分子合成等方向博后、科研助理、工程师
+1/3
三峡集团科研院海上风电研究项目实习生招聘公告
+1/1
北京理工大学珠海校区徐先臣课题组招聘博士后/硕博士
+1/1
浙江师范大学夏永姚/黄健航教授团队招收2026级博士
+1/1
海南大学化学院 招聘 材料与电化学方向——研究助理,博士(2026年入学)
+1/1
2楼2011-03-31 17:13:45
3楼2011-04-01 09:24:11
4楼2011-04-01 09:44:28
雪夕(金币+20, 翻译EPI+1): 2011-04-05 10:43:15
|
面对各种气体,氧化铟传感器的传感响应表现均不一样。这些气体的不同的扩散率和反应活性本文的影响都有着重要影响[28]。Knudsen扩散描述了,气体运输不需要外力就可以进行。根据相应的模型、气体运输的发生是通过大孔隙( 直径>25nm)的分子扩散,而表面扩散主要通过微孔的方式扩散(直径< 1纳米)。事实上,我们的氧化铟传感器包含两种气孔:孔隙直径如氧化铟纳米级(2-4纳米),和更大的气孔(空白)相邻氧化铟纳米级 (直径> >25纳米 从观测的扫描电镜照片得出(图4))。此举被认为在我们的氧化铟传感器的气体运输主要是分子扩散的形式。这表明这一过程可以扩散到类似的深度氧化铟感应层。因此,不同的样本扩散率传感器会稍微有助于传感响应。 另一方面,这些样本的反应性将负责在获得传感响应序列。从ionosorption模型(29)的氧化物半导体气敏传感器得知,减少气体中表面范围上提取的氧气,能固定化传导电子,从而释放固定电子进入入晶体和导致电导率传感器的改变。这些样品有不同的能力提取表面范围上的氧气,所以表达不同传感响应。此外,不同的反应动力学的这些样品可能成为另一个因素导致不同的传感响应。我们相信,样品各方面的综合的影响最终导致传感反应的最终结果。 我们准备好的有气孔的纳米级氧化铟的气体传感优势比较通俗易懂。从理论模拟和实验结果表明,该传感器响应可显著的增加。 |
5楼2011-04-03 18:13:46













回复此楼