| 查看: 1341 | 回复: 4 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
[交流]
急求翻译一段话
|
|||
|
The In2O3 based sensor shows different sensing responses towards various gases. The different diffusivities and reactivity of these gases would be the key factors influencing this issue [28]. The gas transport without external pressure can be described by Knudsen diffusion. According the corresponding model, gas transport occurs mainly by molecular diffusion in macropores (with diameter > 25nm), while surface diffusion becomes predominant in micropores (with diameter < 1 nm). In fact, our In2O3-based sensor contains two kind pores: the pore in the In2O3 nanoplatelets (with diameter 2-4 nm), and the larger pores (gaps) between adjacent In2O3 nanoplatelets (with diameter >>25 nm from the observation of SEM image (Fig. 4a)). It is believed that the gas transport in our In2O3 sensor occurs mainly by molecular diffusion. This indicates the analytes may be able to diffuse similar depth into the In2O3 sensing layer. Therefore, the different diffusivities of the analytes in our sensor would slightly contribute to the sensing response. On the other hand, the reactivity of these analytes would be responsible for the obtained sequence of sensing response. From the ionosorption model [29] of oxide semiconductor gas sensor, reducing gases abstract surface-bound oxygen which immobilized the conduction electron, thereby release immobilized electron into the crystal and induce the change of the conductivity of the sensor. These analytes have different ability to abstract surface-bound oxygen, and so showing different sensing response. In addition, the different reaction kinetics of these analytes may be another factor resulting in the different sensing response. We believe that the compositive influence of these aspects of the analytes induces the consequence of the sensing responses. The gas sensing superiority of our prepared porous In2O3 nanoplatelets is easily understood. From the theoretical simulation and experimental results, the sensor response could remarkably increase as the average crystallite size decreased to below 20 nm, which is about twice the thickness of electron depletion layer [30-33]. The thickness of our prepared In2O3 nanoplatelets is below 6 nm, which is much thinner than twice the thickness of electron depletion layer. That is obviously beneficial to the enhancement of sensing performance. Secondly, our prepared In2O3 nanoplatelets are of single crystalline and porous feature. The carrier transport is easy in the single crystalline structure. It is believed that not only the electrons are easily depleted but also the sensor has higher stability owing to the high crystallinity of the sensing materials. Furthermore, bigger accessible surface together with convenient transport of gas can be benefited from the porous structure [28]. Comparatively, the commercial In2O3 with bigger size has much lower sensitivity. Thirdly, the unique 2-D nanostructures are stable [34-36]. They are effective in mitigating the strong agglomeration between nanoplatelets. As revealed by the reported sensing mechanism, the resistance of the sensing film is controlled by the internanocrystal barrier at the contacts, and the sensitivity results mainly from the barrier modulation at the contacts by gas [37]. A distinct characteristic of the sensing film composed of In2O3 nanoplatelets is that most of the contacts between them are face-face contacts, which has large contact area with most of them contributing to the sensing. This is in contrast to other structure such as nanospheres or nanowires [38]. In addition, our prepared In2O3 nanoplatelets are bound by {110} planes with higher energy, which would have higher gas adsorption and reactivity [4, 19, 20]. Therefore, the In2O3 nanoplatelets possess a good sensing performance and would be promising candidates for fabricating high performance gas sensors. |
» 猜你喜欢
基金委咋了?2026年的指南还没有出来?
已经有4人回复
纳米粒子粒径的测量
已经有8人回复
疑惑?
已经有5人回复
国自然申请面上模板最新2026版出了吗?
已经有14人回复
计算机、0854电子信息(085401-058412)调剂
已经有5人回复
Materials Today Chemistry审稿周期
已经有5人回复
溴的反应液脱色
已经有7人回复
推荐一本书
已经有12人回复
基金申报
已经有4人回复
常年博士招收(双一流,工科)
已经有4人回复
» 抢金币啦!回帖就可以得到:
南京大学能源与资源学院-景旭东教授 (英国皇家工程院院士) 团队博士后招聘
+1/475
柔性电子全国重点实验室(南邮)诚聘博士后(长期有效)
+2/124
哈尔滨工业大学王东博课题组/中科院上海微系统所梁丽娟课题组招收2026年博士生1名
+1/82
成会明院士团队|钱希堂(国家青年人才)招博后啦!二维材料和固态电池
+1/76
上海交通大学任垭萌课题组招聘博士后
+1/72
真诚找对象
+1/57
香港理工大学招收电力系统优化及运筹学博士后
+1/56
时间的眼神
+1/49
悉尼大学 AMME 机械工程 双ARC Future Fellows团队招收CSC博士生
+1/39
上海科技大学物质科学与技术学院|王平鸾课题组联合招聘博士后
+1/25
北京工业大学高靓教授课题组2026级博士研究生招生
+1/12
华中科技大学 煤燃烧全重 紧急招博士生报考 (1月19日截止)
+1/12
【博士后/科研助理招聘-北京理工大学-集成电路与电子学院-国家杰青团队】
+1/11
浙江大学赵俊杰课题组长期招聘博士后及科研相关岗位启事
+1/10
2026博士招生-上海大学先进耐火材料全国重点实验室-招收冶金工程博士研究生-1-2名
+1/8
生殖医学与子代健康全国重点实验室华鹏课题组招收博士后及研究生(长期有效)
+1/8
科研党/导师看过来,强推这个自带“引文验真”的国产工具,改作业效率翻倍
+1/6
武汉双一流高校干细胞与肿瘤生物学团队招聘2026级申请考核制博士生
+1/4
博后找一个好老板把
+1/4
重庆大学诚招2026年生物材料方向博士生
+1/2
2楼2011-03-31 17:13:45
3楼2011-04-01 09:24:11
4楼2011-04-01 09:44:28
雪夕(金币+20, 翻译EPI+1): 2011-04-05 10:43:15
|
面对各种气体,氧化铟传感器的传感响应表现均不一样。这些气体的不同的扩散率和反应活性本文的影响都有着重要影响[28]。Knudsen扩散描述了,气体运输不需要外力就可以进行。根据相应的模型、气体运输的发生是通过大孔隙( 直径>25nm)的分子扩散,而表面扩散主要通过微孔的方式扩散(直径< 1纳米)。事实上,我们的氧化铟传感器包含两种气孔:孔隙直径如氧化铟纳米级(2-4纳米),和更大的气孔(空白)相邻氧化铟纳米级 (直径> >25纳米 从观测的扫描电镜照片得出(图4))。此举被认为在我们的氧化铟传感器的气体运输主要是分子扩散的形式。这表明这一过程可以扩散到类似的深度氧化铟感应层。因此,不同的样本扩散率传感器会稍微有助于传感响应。 另一方面,这些样本的反应性将负责在获得传感响应序列。从ionosorption模型(29)的氧化物半导体气敏传感器得知,减少气体中表面范围上提取的氧气,能固定化传导电子,从而释放固定电子进入入晶体和导致电导率传感器的改变。这些样品有不同的能力提取表面范围上的氧气,所以表达不同传感响应。此外,不同的反应动力学的这些样品可能成为另一个因素导致不同的传感响应。我们相信,样品各方面的综合的影响最终导致传感反应的最终结果。 我们准备好的有气孔的纳米级氧化铟的气体传感优势比较通俗易懂。从理论模拟和实验结果表明,该传感器响应可显著的增加。 |
5楼2011-04-03 18:13:46











回复此楼