| 查看: 1558 | 回复: 10 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
[交流]
量子力学问题 已有7人参与
|
|||
| 怎么理解不对易的算符也可能有不完备的共同本征态? |
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
球磨粉体时遇到了大的问题,请指教!
已经有8人回复
江汉大学解明教授课题组招博士研究生/博士后
已经有3人回复
依托企业入选了国家启明计划青年人才。有无高校可以引进的。
已经有11人回复
sciencejoy
新虫 (著名写手)
- 应助: 436 (硕士)
- 金币: 11205.3
- 红花: 89
- 帖子: 2974
- 在线: 498小时
- 虫号: 802149
- 注册: 2009-07-02
- 性别: GG
- 专业: 高分子物理与高分子物理化
3楼2015-11-02 20:44:03
4楼2015-11-02 20:49:33
5楼2015-11-02 23:42:55
FreeMind2011
铁杆木虫 (小有名气)
- 应助: 5 (幼儿园)
- 金币: 5636.9
- 红花: 4
- 帖子: 149
- 在线: 346.5小时
- 虫号: 1533530
- 注册: 2011-12-12
- 专业: 粒子物理学和场论
★ ★ ★ ★
小木虫: 金币+0.5, 给个红包,谢谢回帖
华丽的飘过: 金币+3, 3q 2015-11-04 22:23:21
小木虫: 金币+0.5, 给个红包,谢谢回帖
华丽的飘过: 金币+3, 3q 2015-11-04 22:23:21
|
算符的性质成立是一个普遍关系,不依赖基底选择;这等价于拥有完备的共同本征态。 在考虑基底的情况下,考虑算符的矩阵形式,在同一组完备基下,有可能两个算符的矩阵元恰好有一部分都是局部对角化的。那么这个矩阵元对应的态就可以看作两个算符的共同本征态。 物理上,算符作用在态上,代表了一种对态的操作,那么会存在一种态,所谓本征态,则是操作完成后的新态与初态只差一个常数因子。如果有两种操作对于一个态的操作都导致这样的结果,则这个态就是这两个算符的共同本征态。 最常用的特例就是角动量的任何两个分量的0本征态一样。 |
6楼2015-11-03 14:24:50













回复此楼
liqingfeng06