24小时热门版块排行榜    

查看: 5918  |  回复: 112
【奖励】 本帖被评价95次,作者pkusiyuan增加金币 75.6
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

pkusiyuan

银虫 (正式写手)


[资源] 量子力学及场论基础(英文)

Preface page xvii
Physical constants xx
1 Basic formalism 1
1.1 State vectors 1
1.2 Operators and physical observables 3
1.3 Eigenstates 4
1.4 Hermitian conjugation and Hermitian operators 5
1.5 Hermitian operators: their eigenstates and eigenvalues 6
1.6 Superposition principle 7
1.7 Completeness relation 8
1.8 Unitary operators 9
1.9 Unitary operators as transformation operators 10
1.10 Matrix formalism 12
1.11 Eigenstates and diagonalization of matrices 16
1.12 Density operator 18
1.13 Measurement 20
1.14 Problems 21
2 Fundamental commutator and time evolution of state vectors
and operators 24
2.1 Continuous variables: X and P operators 24
2.2 Canonical commutator [X , P] 26
2.3 P as a derivative operator: another way 29
2.4 X and P as Hermitian operators 30
2.5 Uncertainty principle 32
2.6 Some interesting applications of uncertainty relations 35
2.7 Space displacement operator 36
2.8 Time evolution operator 41
2.9 Appendix to Chapter 2 44
2.10 Problems 52
3 Dynamical equations 55
3.1 Schrödinger picture 55
3.2 Heisenberg picture 57
viii Contents
3.3 Interaction picture 59
3.4 Superposition of time-dependent states and energy–time
uncertainty relation 63
3.5 Time dependence of the density operator 66
3.6 Probability conservation 67
3.7 Ehrenfest’s theorem 68
3.8 Problems 70
4 Free particles 73
4.1 Free particle in one dimension 73
4.2 Normalization 75
4.3 Momentum eigenfunctions and Fourier transforms 78
4.4 Minimum uncertainty wave packet 79
4.5 Group velocity of a superposition of plane waves 83
4.6 Three dimensions – Cartesian coordinates 84
4.7 Three dimensions – spherical coordinates 87
4.8 The radial wave equation 91
4.9 Properties of Ylm(θ, φ) 92
4.10 Angular momentum 94
4.11 Determining L2 from the angular variables 97
4.12 Commutator

Li, Lj

and

L2, Lj

98
4.13 Ladder operators 100
4.14 Problems 102
5 Particles with spin ½ 103
5.1 Spin ½ system 103
5.2 Pauli matrices 104
5.3 The spin ½ eigenstates 105
5.4 Matrix representation of σx and σy 106
5.5 Eigenstates of σx and σy 108
5.6 Eigenstates of spin in an arbitrary direction 109
5.7 Some important relations for σi 110
5.8 Arbitrary 2 × 2 matrices in terms of Pauli matrices 111
5.9 Projection operator for spin ½ systems 112
5.10 Density matrix for spin ½ states and the ensemble average 114
5.11 Complete wavefunction 116
5.12 Pauli exclusion principle and Fermi energy 116
5.13 Problems 118
6 Gauge invariance, angular momentum, and spin 120
6.1 Gauge invariance 120
6.2 Quantum mechanics 121
6.3 Canonical and kinematic momenta 123
6.4 Probability conservation 124
ix Contents
6.5 Interaction with the orbital angular momentum 125
6.6 Interaction with spin: intrinsic magnetic moment 126
6.7 Spin–orbit interaction 128
6.8 Aharonov–Bohm effect 129
6.9 Problems 131
7 Stern–Gerlach experiments 133
7.1 Experimental set-up and electron’s magnetic moment 133
7.2 Discussion of the results 134
7.3 Problems 136
8 Some exactly solvable bound-state problems 137
8.1 Simple one-dimensional systems 137
8.2 Delta-function potential 145
8.3 Properties of a symmetric potential 147
8.4 The ammonia molecule 148
8.5 Periodic potentials 151
8.6 Problems in three dimensions 156
8.7 Simple systems 160
8.8 Hydrogen-like atom 164
8.9 Problems 170
9 Harmonic oscillator 174
9.1 Harmonic oscillator in one dimension 174
9.2 Problems 184
10 Coherent states 187
10.1 Eigenstates of the lowering operator 187
10.2 Coherent states and semiclassical description 192
10.3 Interaction of a harmonic oscillator with an electric field 194
10.4 Appendix to Chapter 10 199
10.5 Problems 200
11 Two-dimensional isotropic harmonic oscillator 203
11.1 The two-dimensional Hamiltonian 203
11.2 Problems 207
12 Landau levels and quantum Hall effect 208
12.1 Landau levels in symmetric gauge 208
12.2 Wavefunctions for the LLL 212
12.3 Landau levels in Landau gauge 214
12.4 Quantum Hall effect 216
12.5 Wavefunction for filled LLLs in a Fermi system 220
12.6 Problems 221
x Contents
13 Two-level problems 223
13.1 Time-independent problems 223
13.2 Time-dependent problems 234
13.3 Problems 246
14 Spin ½ systems in the presence of magnetic fields 251
14.1 Constant magnetic field 251
14.2 Spin precession 254
14.3 Time-dependent magnetic field: spin magnetic resonance 255
14.4 Problems 258
15 Oscillation and regeneration in neutrinos and neutral K-mesons
as two-level systems 260
15.1 Neutrinos 260
15.2 The solar neutrino puzzle 260
15.3 Neutrino oscillations 263
15.4 Decay and regeneration 265
15.5 Oscillation and regeneration of stable and unstable systems 269
15.6 Neutral K-mesons 273
15.7 Problems 276
16 Time-independent perturbation for bound states 277
16.1 Basic formalism 277
16.2 Harmonic oscillator: perturbative vs. exact results 281
16.3 Second-order Stark effect 284
16.4 Degenerate states 287
16.5 Linear Stark effect 289
16.6 Problems 290
17 Time-dependent perturbation 293
17.1 Basic formalism 293
17.2 Harmonic perturbation and Fermi’s golden rule 296
17.3 Transitions into a group of states and scattering cross-section 299
17.4 Resonance and decay 303
17.5 Appendix to Chapter 17 310
17.6 Problems 315
18 Interaction of charged particles and radiation in perturbation theory 318
18.1 Electron in an electromagnetic field: the absorption cross-section 318
18.2 Photoelectric effect 323
18.3 Coulomb excitations of an atom 325
18.4 Ionization 328
18.5 Thomson, Rayleigh, and Raman scattering in second-order
perturbation 331
18.6 Problems 339
xi Contents
19 Scattering in one dimension 342
19.1 Reflection and transmission coefficients 342
19.2 Infinite barrier 344
19.3 Finite barrier with infinite range 345
19.4 Rigid wall preceded by a potential well 348
19.5 Square-well potential and resonances 351
19.6 Tunneling 354
19.7 Problems 356
20 Scattering in three dimensions – a formal theory 358
20.1 Formal solutions in terms of Green’s function 358
20.2 Lippmann–Schwinger equation 360
20.3 Born approximation 363
20.4 Scattering from a Yukawa potential 364
20.5 Rutherford scattering 365
20.6 Charge distribution 366
20.7 Probability conservation and the optical theorem 367
20.8 Absorption 370
20.9 Relation between the T-matrix and the scattering amplitude 372
20.10 The S-matrix 374
20.11 Unitarity of the S-matrix and the relation between S and T 378
20.12 Properties of the T-matrix and the optical theorem (again) 382
20.13 Appendix to Chapter 20 383
20.14 Problems 384
21 Partial wave amplitudes and phase shifts 386
21.1 Scattering amplitude in terms of phase shifts 386
21.2 χl , Kl , and Tl 392
21.3 Integral relations for χl , Kl , and Tl 393
21.4 Wronskian 395
21.5 Calculation of phase shifts: some examples 400
21.6 Problems 405
22 Analytic structure of the S-matrix 407
22.1 S-matrix poles 407
22.2 Jost function formalism 413
22.3 Levinson’s theorem 420
22.4 Explicit calculation of the Jost function for l = 0 421
22.5 Integral representation of F0(k) 424
22.6 Problems 426
23 Poles of the Green’s function and composite systems 427
23.1 Relation between the time-evolution operator and the
Green’s function 427
23.2 Stable and unstable states 429
xii Contents
23.3 Scattering amplitude and resonance 430
23.4 Complex poles 431
23.5 Two types of resonances 431
23.6 The reaction matrix 432
23.7 Composite systems 442
23.8 Appendix to Chapter 23 447
24 Approximation methods for bound states and scattering 450
24.1 WKB approximation 450
24.2 Variational method 458
24.3 Eikonal approximation 461
24.4 Problems 466
25 Lagrangian method and Feynman path integrals 469
25.1 Euler–Lagrange equations 469
25.2 N oscillators and the continuum limit 471
25.3 Feynman path integrals 473
25.4 Problems 478
26 Rotations and angular momentum 479
26.1 Rotation of coordinate axes 479
26.2 Scalar functions and orbital angular momentum 483
26.3 State vectors 485
26.4 Transformation of matrix elements and representations of the
rotation operator 487
26.5 Generators of infinitesimal rotations: their eigenstates
and eigenvalues 489
26.6 Representations of J 2 and Ji for j = 12
and j = 1 494
26.7 Spherical harmonics 495
26.8 Problems 501
27 Symmetry in quantum mechanics and symmetry groups 502
27.1 Rotational symmetry 502
27.2 Parity transformation 505
27.3 Time reversal 507
27.4 Symmetry groups 511
27.5 Dj(R) for j = 1
2 and j = 1: examples of SO(3) and SU(2) groups 514
27.6 Problems 516
28 Addition of angular momenta 518
28.1 Combining eigenstates: simple examples 518
28.2 Clebsch–Gordan coefficients and their recursion relations 522
28.3 Combining spin ½ and orbital angular momentum l 524
28.4 Appendix to Chapter 28 527
28.5 Problems 528
xiii Contents
29 Irreducible tensors and Wigner–Eckart theorem 529
29.1 Irreducible spherical tensors and their properties 529
29.2 The irreducible tensors: Ylm(θ, φ) and Dj(χ) 533
29.3 Wigner–Eckart theorem 536
29.4 Applications of theWigner–Eckart theorem 538
29.5 Appendix to Chapter 29: SO(3), SU(2) groups and Young’s tableau 541
29.6 Problems 548
30 Entangled states 549
30.1 Definition of an entangled state 549
30.2 The singlet state 551
30.3 Differentiating the two approaches 552
30.4 Bell’s inequality 553
30.5 Problems 555
31 Special theory of relativity: Klein–Gordon and Maxwell’s equations 556
31.1 Lorentz transformation 556
31.2 Contravariant and covariant vectors 557
31.3 An example of a covariant vector 560
31.4 Generalization to arbitrary tensors 561
31.5 Relativistically invariant equations 563
31.6 Appendix to Chapter 31 569
31.7 Problems 572
32 Klein–Gordon and Maxwell’s equations 575
32.1 Covariant equations in quantum mechanics 575
32.2 Klein–Gordon equations: free particles 576
32.3 Normalization of matrix elements 578
32.4 Maxwell’s equations 579
32.5 Propagators 581
32.6 Virtual particles 586
32.7 Static approximation 586
32.8 Interaction potential in nonrelativistic processes 587
32.9 Scattering interpreted as an exchange of virtual particles 589
32.10 Appendix to Chapter 32 593
33 The Dirac equation 597
33.1 Basic formalism 597
33.2 Standard representation and spinor solutions 600
33.3 Large and small components of u(p) 601
33.4 Probability conservation 605
33.5 Spin ½ for the Dirac particle 607
34 Dirac equation in the presence of spherically symmetric potentials 611
34.1 Spin–orbit coupling 611
xiv Contents
34.2 K-operator for the spherically symmetric potentials 613
34.3 Hydrogen atom 616
34.4 Radial Dirac equation 618
34.5 Hydrogen atom states 623
34.6 Hydrogen atom wavefunction 624
34.7 Appendix to Chapter 34 626
35 Dirac equation in a relativistically invariant form 631
35.1 Covariant Dirac equation 631
35.2 Properties of the γ -matrices 632
35.3 Charge–current conservation in a covariant form 633
35.4 Spinor solutions: ur(p) and vr(p) 635
35.5 Normalization and completeness condition for ur(p) and vr(p) 636
35.6 Gordon decomposition 640
35.7 Lorentz transformation of the Dirac equation 642
35.8 Appendix to Chapter 35 644
36 Interaction of a Dirac particle with an electromagnetic field 647
36.1 Charged particle Hamiltonian 647
36.2 Deriving the equation another way 650
36.3 Gordon decomposition and electromagnetic current 651
36.4 Dirac equation with EM field and comparison with the
Klein–Gordon equation 653
36.5 Propagators: the Dirac propagator 655
36.6 Scattering 657
36.7 Appendix to Chapter 36 661
37 Multiparticle systems and second quantization 663
37.1 Wavefunctions for identical particles 663
37.2 Occupation number space and ladder operators 664
37.3 Creation and destruction operators 666
37.4 Writing single-particle relations in multiparticle language: the
operators, N, H, and P 670
37.5 Matrix elements of a potential 671
37.6 Free fields and continuous variables 672
37.7 Klein–Gordon/scalar field 674
37.8 Complex scalar field 678
37.9 Dirac field 680
37.10 Maxwell field 683
37.11 Lorentz covariance for Maxwell field 687
37.12 Propagators and time-ordered products 688
37.13 Canonical quantization 690
37.14 Casimir effect 693
37.15 Problems 697
xv Contents
38 Interactions of electrons and phonons in condensed matter 699
38.1 Fermi energy 699
38.2 Interacting electron gas 704
38.3 Phonons 708
38.4 Electron–phonon interaction 713
39 Superconductivity 719
39.1 Many-body system of half-integer spins 719
39.2 Normal states ( = 0,G = 0) 724
39.3 BCS states ( = 0) 725
39.4 BCS condensate in Green’s function formalism 727
39.5 Meissner effect 732
39.6 Problems 735
40 Bose–Einstein condensation and superfluidity 736
40.1 Many-body system of integer spins 736
40.2 Superfluidity 740
40.3 Problems 742
41 Lagrangian formulation of classical fields 743
41.1 Basic structure 743
41.2 Noether’s theorem 744
41.3 Examples 746
41.4 Maxwell’s equations and consequences of gauge invariance 750
42 Spontaneous symmetry breaking 755
42.1 BCS mechanism 755
42.2 Ferromagnetism 756
42.3 SSB for discrete symmetry in classical field theory 758
42.4 SSB for continuous symmetry 760
42.5 Nambu–Goldstone bosons 762
42.6 Higgs mechanism 765
43 Basic quantum electrodynamics and Feynman diagrams 770
43.1 Perturbation theory 770
43.2 Feynman diagrams 773
43.3 T(HI (x1)HI (x2)) andWick’s theorem 777
43.4 Feynman rules 783
43.5 Cross-section for 1 + 2→3 + 4 783
43.6 Basic two-body scattering in QED 786
43.7 QED vs. nonrelativistic limit: electron–electron system 786
43.8 QED vs. nonrelativistic limit: electron–photon system 789
44 Radiative corrections 793
44.1 Radiative corrections and renormalization 793
xvi Contents
44.2 Electron self-energy 794
44.3 Appendix to Chapter 44 799
45 Anomalous magnetic moment and Lamb shift 806
45.1 Calculating the divergent integrals 806
45.2 Vertex function and the magnetic moment 806
45.3 Calculation of the vertex function diagram 808
45.4 Divergent part of the vertex function 810
45.5 Radiative corrections to the photon propagator 811
45.6 Divergent part of the photon propagator 813
45.7 Modification of the photon propagator and photon wavefunction 814
45.8 Combination of all the divergent terms: basic renormalization 816
45.9 Convergent parts of the radiative corrections 817
45.10 Appendix to Chapter 45 821
Bibliography 825
Index 828
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:libolin3@tal.com
  • 附件 1 : 量子力学及场论基础.pdf
  • 2015-03-27 14:21:24, 14.38 M

» 收录本帖的淘贴专辑推荐

精华网帖收集 电子书资源 制药工程 李的收藏
专业文件-物理卷 图书 介电材料

» 本帖已获得的红花(最新10朵)

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

xoana

捐助贵宾 (小有名气)


★★★★★ 五星级,优秀推荐

楼主好人!!!
39楼2015-04-08 19:52:20
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
最具人气热帖推荐 [查看全部] 作者 回/看 最后发表
[硕博家园] 博士毕业高校和就业的相关问题 +4 SCITOPPP 2024-06-14 7/350 2024-06-16 20:28 by SCITOPPP
[教师之家] 关于2023的收入 +35 小龙虾2008 2024-06-10 36/1800 2024-06-16 19:30 by guoguo0119
[基金申请] 2024国社科通讯评审 +9 qsd10086 2024-06-13 17/850 2024-06-16 19:14 by onroad24
[论文投稿] 二审返修送审10天了,原来一审的3个审稿人只有2个接受了审稿,会邀请新审稿人么? 50+3 huanpo116 2024-06-15 5/250 2024-06-16 10:27 by bobvan
[博后之家] 山东大学(青岛)“天然药物生物智造”课题组 招聘“博士后”(年薪20.4-55.6万元) +5 第二种态度 2024-06-11 8/400 2024-06-16 10:14 by 午睡未进行
[有机交流] 车间生产,真空度很高,温度很高,但减压蒸馏速度很慢。 10+12 召唤鬼泣lL 2024-06-13 36/1800 2024-06-16 09:20 by ddc805
[找工作] 应届大龄土博教职选择,石河子大学和广西大学 10+4 茅山老道士 2024-06-10 33/1650 2024-06-16 08:36 by shl2112501
[基金申请] 博后面上今天有bug可以看到是否资助? +20 lyfbangong 2024-06-12 31/1550 2024-06-15 21:18 by since—2010
[论文投稿] 求机械类四区sci推荐 5+3 迷茫小旷 2024-06-14 4/200 2024-06-15 11:25 by bobvan
[论文投稿] 投了一篇4区的SCI,审稿人一个拒稿,一个小修,编辑给了大修。 +9 安稳22123 2024-06-13 10/500 2024-06-14 23:45 by jurkat.1640
[考研] 物理化学一对一辅导 +3 林大diao 2024-06-12 5/250 2024-06-14 20:57 by 林大diao
[硕博家园] 关于硕博连读的一些疑问? +4 Lwenter 2024-06-14 4/200 2024-06-14 14:32 by ou0551
[考博] 申博找导师 +4 疏影横斜水清浅3 2024-06-13 6/300 2024-06-14 14:31 by zxl_1105
[基金申请] 国自然基金公布的时候基金号有吗 +8 潇洒怡惜 2024-06-13 11/550 2024-06-14 11:24 by JRfei
[论文投稿] ACS Nano投稿后分配到副编辑手里12天了,能确定送审了吗? +5 潇洒怡惜 2024-06-12 10/500 2024-06-14 09:56 by 潇洒怡惜
[基金申请] 博士后面上项目状态还是专家评审吗 10+9 Thatcheremu 2024-06-13 55/2750 2024-06-13 21:23 by 乌合麒麟
[硕博家园] 考博应该从哪里开始准备 +6 亮姐2019 2024-06-11 8/400 2024-06-13 12:53 by 帕秋莉GO
[论文投稿] with editor日期变更 +3 慎独的小花卷 2024-06-12 8/400 2024-06-13 11:00 by 慎独的小花卷
[论文投稿] 摩擦磨损论文投稿 +3 jmysan 2024-06-12 3/150 2024-06-13 08:36 by 莱茵润色
[硕博家园] 求助 +6 LYWwrz 2024-06-09 9/450 2024-06-11 13:12 by powerhours
信息提示
请填处理意见