| ²é¿´: 485 | »Ø¸´: 7 | |||
| µ±Ç°Ö»ÏÔʾÂú×ãÖ¸¶¨Ìõ¼þµÄ»ØÌû£¬µã»÷ÕâÀï²é¿´±¾»°ÌâµÄËùÓлØÌû | |||
Ablaгæ (³õÈëÎÄ̳)
|
[ÇóÖú]
Çó°ïÎÒ¿´¿´Õâ¸ö³ÌÐòÄÄÀï³öÁËÎÊÌⰡΪʲôÊä³öµÄ¶¼ÊÇ1ÕâÌõÖ±Ïß
|
||
|
nh = 2.22 nl = 1.41 c = 3*10^8 dh = (692*10^-9)/(4*nh) dl = (692*10^-9)/(4*nl) ps = Cos[Pi/6] a = Sqrt[1 - (1/(2*2.22))^2] b = Sqrt[1 - (1/(2*1.41))^2] p1 = a/2.22 p2 = b/1.41 k1[w_] = w/(3*10^8)*2.22*a k2[w_] = w/(3*10^8)*1.41*b MatrixForm[n1[w_] = {{Cos[k1[w]*dh], I*1/p1*Sin[k1[w]*dh]}, {I*p1*Sin[k1[w]*dh], Cos[k1[w]*dh]}}] MatrixForm[n2[w_] = {{Cos[k2[w]*dl], I*1/p2*Sin[k2[w]*dl]}, {I*p2*Sin[k2[w]*dl], Cos[k2[w]*dl]}}] n[w_] = n1[w].n2[w].n1[w].n2[w].n1[w].n2[w].n1[w].n2[w].n1[w].n2[ w].n1[w]; x11[w_] = Part[n[w], 1, 1]; x12[w_] = Part[n[w], 1, 2]; x21[w_] = Part[n[w], 2, 1]; x22[w_] = Part[n[w], 2, 2]; t[w_] = (2*Sqrt[3]/2)/(Sqrt[3]/2*x22[w] + Sqrt[3]/2*x11[w] - 3/4*x12[w] - x2[w]); t1[w_] = Re[t[w]] t2[w_] = Im[t[w]] st[w_] = Sqrt[t1[w]^2 + t2[w]^2]; T[w_] = st[w]^2; Plot[T[w], {w, 0, 2}, AxesOrigin -> {0, 0}] Õâ¸ö³ÌÐòÄÄÀïÓдíÎóÒ²Çë¶à¶àÖ¸Õý°¡£¬±¾È˳õѧÕß±íʾºÜÈõ [ Last edited by Abla on 2013-1-9 at 14:08 ] |
» ²ÂÄãϲ»¶
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ9È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ4È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ4È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ5È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ5È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ8È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ10È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍÆ¼ö£¬¶ÔÄúͬÑùÓаïÖú:
Ò»¸ögjfÎļþ£¬×ÜÊÇpending,¸÷λ°ïÎÒ¿´¿´ÊÇʲôÎÊÌ⣿
ÒѾÓÐ16È˻ظ´
PCRºÃ¶à´ÎÁË£¬Ò»Ö±Ã»½á¹û£¬Âé·³¸÷λ°ïÎÒ¿´¿´ÊÇÄijöÎÊÌâÁË£¿
ÒѾÓÐ15È˻ظ´
ÇóÖúmatlabÒ»³ÌÐòÔËÐеÄÎÊÌ⣬°ïæ¿´¿´ÄÄÀï²»¶Ô
ÒѾÓÐ4È˻ظ´
Âé·³Ëþ·Æ¶ûÇúÏ߸ßÊÖ°ïÎÒ¿´¿´Õ⼸¸öͼ£¬ËµÃ÷ʲôÎÊÌ⣬»òÕßÄÜ´ÓÖеóöʲôÐÅÏ¢£¿
ÒѾÓÐ12È˻ظ´
ÎÒ±àµÄSimpson»ý·Ö·¨fortran³ÌÐò¸ø²»³ö½á¹û£¬´óÏÀÃÇ¿´¿´ÄÄÀï³öÁËÎÊÌ⣿
ÒѾÓÐ4È˻ظ´
ÇëÓоÑéµÄ³æÓѰïÎÒ¿´¿´SCIÆÚ¿¯IEEE TRANSACTIONS ON PLASMA SCIENCEµÄ·ÑÓÃÖ§¸¶ÎÊÌâ
ÒѾÓÐ4È˻ظ´
°ïæ¿´Ò»ÏÂÕâ¸öϯ·ò¼îµÄºÏ³É£¬ÎÊÌâ³öÔÚÄÄÀ¶àлÁË£¡
ÒѾÓÐ7È˻ظ´
Çë½Ì¸ßÊÖ£¬°ïÎÒ¿´ÏÂÌùÖÐͼƬµÄË®ÌåÊÇʲôÎÊÌ⣬лл
ÒѾÓÐ19È˻ظ´
¡¾ÇóÖú¡¿´ó¼Ò°ïæ¸ø¿´¿´£¬µ½µ×ÊÇÄÄÀï³öÁËÎÊÌ⣿ллÁË£¡£¡£¡
ÒѾÓÐ20È˻ظ´
¡¾ÎÊÌâÇóÖú¡¿ËµËµÎÒµÄÐÄÀï״̬£¬´ó¼Ò°ïÎÒ¿´¿´ÊDz»ÊǸÃÈ¥¿´ÐÄÀíÒ½ÉúÁË£¿
ÒѾÓÐ28È˻ظ´
¡¾ÇóÖú¡¿ÇóUDF¸ßÊÖ°ïæ¿´¿´ÎÒµÄÎÊÌâ
ÒѾÓÐ18È˻ظ´
¡¾ÇóÖú¡¿ËÄܰïÎÒ¿´¿´ÕâÕÅëàÊ󯤷ô²¡ÀíÇÐÆ¬,ÄÜ˵Ã÷ʲôÎÊÌâÂð?°ïæ½â¶ÁһϰÉ
ÒѾÓÐ4È˻ظ´
¡¾ÇóÖú¡¿´ó¼Ò°ïÎÒ¿´¿´Õ⻤·ôÆ·³É·ÖÓÐûÓÐÎÊÌâ
ÒѾÓÐ7È˻ظ´
´ó¼Ò°ïÎÒ¿´¿´Õâ3¸öOfferÑ¡ÔñÎÊÌâ
ÒѾÓÐ55È˻ظ´
ÄÄλͬѧ°ïæÊÔÊÔÕâ¸öÍøÒ³ÀïÎÄ×ÖÄܲ»Äܸ´ÖÆ£¬¿´ÎÒµçÄÔÓÐûÓÐÎÊÌâ
ÒѾÓÐ6È˻ظ´
¡¾ÎÊÌâÇóÖú¡¿°ïÎÒ¿´¿´ÕâÖÖÇé¿ö´«²»´«È¾£¿
ÒѾÓÐ11È˻ظ´
¡¾ÇóÖú¡¿Äܲ»ÄܰïÎÒ¿´¿´Õâ·ÝÅä·½ÓÐʲôÎÊÌ⣿
ÒѾÓÐ23È˻ظ´
¡¾ÌÖÂÛ¡¿´ó»ï°ïÂú¿´¿´Õâ¸öTG-DTA»ùÏßÎļþµÄÎÊÌâ
ÒѾÓÐ12È˻ظ´
walk1997
½ð³æ (ÖøÃûдÊÖ)
- Ó¦Öú: 1 (Ó×¶ùÔ°)
- ½ð±Ò: 4676.2
- ºì»¨: 22
- Ìû×Ó: 1066
- ÔÚÏß: 798.1Сʱ
- ³æºÅ: 416039
- ×¢²á: 2007-06-29
- ÐÔ±ð: GG
- רҵ: Á£×ÓÎïÀíѧºÍ³¡ÂÛ
¡ï ¡ï
jjdg: ½ð±Ò+2, ÐÁ¿àÁË 2013-01-10 10:38:44
jjdg: ½ð±Ò+2, ÐÁ¿àÁË 2013-01-10 10:38:44
|
Õâ¸ö³ÌÐòÀïÃæ Äã×Ðϸ¿´Ï ÄãµÄÊäÈë n1[w] n2[w] n[w] ÔÚСwÇé¿öÏ ²î²»¶à¾ÍÊǸöµ¥Î»¾ØÕó Äã×îºóËã³öÀ´µÄ×ÔÈ»²î²»¶àÊǸöÖ±Ïß °Ñ»µÄ·¶Î§¸ÄϾͺà ²»¹ý ¹À¼ÆÄãÊäÈëµÄ²ÎÊý¿ÉÄÜÓеãÎÊÌâ £-------------------------------------------------------------------------- Clear["Global`*"] nh = 2.22 nl = 1.41 c = 3*10^8 dh = (692*10^-9)/(4*nh) dl = (692*10^-9)/(4*nl) ps = Cos[Pi/6] a = Sqrt[1 - (1/(2*2.22))^2] b = Sqrt[1 - (1/(2*1.41))^2] p1 = a/2.22 p2 = b/1.41 k1[w_] := w/(3*10^8)*2.22*a k2[w_] := w/(3*10^8)*1.41*b n1[w_] := {{Cos[k1[w]*dh], I*1/p1*Sin[k1[w]*dh]}, {I*p1*Sin[k1[w]*dh], Cos[k1[w]*dh]}} n2[w_] := {{Cos[k2[w]*dl], I*1/p2*Sin[k2[w]*dl]}, {I*p2*Sin[k2[w]*dl], Cos[k2[w]*dl]}} n[w_] := n1[w].n2[w].n1[w].n2[w].n1[w].n2[w].n1[w].n2[w].n1[w].n2[ w].n1[w]; x11[w_] := Part[n[w], 1, 1]; x12[w_] := Part[n[w], 1, 2]; x21[w_] := Part[n[w], 2, 1]; x22[w_] := Part[n[w], 2, 2]; t[w_] := (2*Sqrt[3]/2)/(Sqrt[3]/2*x22[w] + Sqrt[3]/2*x11[w] - 3/4*x12[w] - x21[w]); t1[w_] := Re[t[w]] t2[w_] := Im[t[w]] st[w_] := Sqrt[t1[w]^2 + t2[w]^2]; T[w_] := st[w]^2; Plot[T[w], {w, 1*10^16, 1*10^16 + 10^15}] £---------------------------------------------------------------------------- |
4Â¥2013-01-10 09:22:51
Abla
гæ (³õÈëÎÄ̳)
- Ó¦Öú: 0 (Ó×¶ùÔ°)
- ½ð±Ò: 13.5
- Ìû×Ó: 11
- ÔÚÏß: 3.1Сʱ
- ³æºÅ: 2221607
- ×¢²á: 2013-01-04
- רҵ: ¹âѧ
2Â¥2013-01-09 14:20:36
mshwangg
ÖÁ×ðľ³æ (ÕýʽдÊÖ)
- ³ÌÐòÇ¿Ìû: 5
- Ó¦Öú: 206 (´óѧÉú)
- ½ð±Ò: 10702.8
- É¢½ð: 100
- ºì»¨: 19
- Ìû×Ó: 597
- ÔÚÏß: 195.4Сʱ
- ³æºÅ: 576702
- ×¢²á: 2008-06-21
- רҵ: ÎïÀíѧI
¡¾´ð°¸¡¿Ó¦Öú»ØÌû
¡ï ¡ï ¡ï
¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
jjdg: ½ð±Ò+1, ¸Ðл²ÎÓë 2013-01-10 10:38:19
Abla: ½ð±Ò+2 2013-01-10 14:29:57
¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
jjdg: ½ð±Ò+1, ¸Ðл²ÎÓë 2013-01-10 10:38:19
Abla: ½ð±Ò+2 2013-01-10 14:29:57
|
´ÓÏÖÔڵijÌÐòÉÏ¿´£¬ÕâÒ»¾ä t[w_] = (2*Sqrt[3]/2)/(Sqrt[3]/2*x22[w] + Sqrt[3]/2*x11[w] - 3/4*x12[w] - x2[w]); ÖдæÔÚ䶨ÒåµÄx2£¬»áµ¼Ö»²»³öͼ£¬¼ì²éÒ»ÏÂÊÇ·ñÓдíÎó¡£ ½«x2¸Ä³Éx21»òÕßx22Ö®ºó£¬plot¿ÉÒԻͼÊÇÒ»ÌõÖ±Ïß¡£´Ëʱ˵Ã÷³ÌÐòÓï·¨ÉÏûÓÐÎÊÌ⣬ΪʲôÊÇÒ»ÌõÖ±ÏßÐèÒªÄã´Ó³ÌÐòÂß¼ÉϺÍÖÚ¶à²ÎÊýºÍº¯Êý¶¨ÒåÉÏ¿¼ÂÇÊÇ·ñÓÐÎÊÌâ¡£ ÕâÑùµÄÎÊÌâ·Ç±¾ÁìÓòµÄÈ˼¸ºõÎÞ·¨°ïÄãÁË£¬ÒòÎªÉæ¼°µ½×¨ÒµµÄ֪ʶδ±Ø¶¼ÖªµÀ¡£ |
3Â¥2013-01-10 06:34:00
walk1997
½ð³æ (ÖøÃûдÊÖ)
- Ó¦Öú: 1 (Ó×¶ùÔ°)
- ½ð±Ò: 4676.2
- ºì»¨: 22
- Ìû×Ó: 1066
- ÔÚÏß: 798.1Сʱ
- ³æºÅ: 416039
- ×¢²á: 2007-06-29
- ÐÔ±ð: GG
- רҵ: Á£×ÓÎïÀíѧºÍ³¡ÂÛ
5Â¥2013-01-10 09:23:54













»Ø¸´´ËÂ¥