²é¿´: 484  |  »Ø¸´: 7
µ±Ç°Ö»ÏÔʾÂú×ãÖ¸¶¨Ìõ¼þµÄ»ØÌû£¬µã»÷ÕâÀï²é¿´±¾»°ÌâµÄËùÓлØÌû

Abla

гæ (³õÈëÎÄ̳)

[ÇóÖú] Çó°ïÎÒ¿´¿´Õâ¸ö³ÌÐòÄÄÀï³öÁËÎÊÌⰡΪʲôÊä³öµÄ¶¼ÊÇ1ÕâÌõÖ±Ïß

nh = 2.22
nl = 1.41
c = 3*10^8
dh = (692*10^-9)/(4*nh)
dl = (692*10^-9)/(4*nl)
ps = Cos[Pi/6]
a = Sqrt[1 - (1/(2*2.22))^2]
b = Sqrt[1 - (1/(2*1.41))^2]
p1 = a/2.22
p2 = b/1.41
k1[w_] = w/(3*10^8)*2.22*a
k2[w_] = w/(3*10^8)*1.41*b
MatrixForm[n1[w_] = {{Cos[k1[w]*dh], I*1/p1*Sin[k1[w]*dh]}, {I*p1*Sin[k1[w]*dh], Cos[k1[w]*dh]}}]
MatrixForm[n2[w_] = {{Cos[k2[w]*dl], I*1/p2*Sin[k2[w]*dl]}, {I*p2*Sin[k2[w]*dl], Cos[k2[w]*dl]}}]
n[w_] = n1[w].n2[w].n1[w].n2[w].n1[w].n2[w].n1[w].n2[w].n1[w].n2[ w].n1[w];
x11[w_] = Part[n[w], 1, 1];
x12[w_] = Part[n[w], 1, 2];
x21[w_] = Part[n[w], 2, 1];
x22[w_] = Part[n[w], 2, 2];
t[w_] = (2*Sqrt[3]/2)/(Sqrt[3]/2*x22[w] + Sqrt[3]/2*x11[w] - 3/4*x12[w] - x2[w]);
t1[w_] = Re[t[w]]
t2[w_] = Im[t[w]]
st[w_] = Sqrt[t1[w]^2 + t2[w]^2];

T[w_] = st[w]^2;
Plot[T[w], {w, 0, 2}, AxesOrigin -> {0, 0}]
Õâ¸ö³ÌÐòÄÄÀïÓдíÎóÒ²Çë¶à¶àÖ¸Õý°¡£¬±¾È˳õѧÕß±íʾºÜÈõ

[ Last edited by Abla on 2013-1-9 at 14:08 ]
»Ø¸´´ËÂ¥

» ²ÂÄãϲ»¶

» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍÆ¼ö£¬¶ÔÄúͬÑùÓаïÖú:

ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

mshwangg

ÖÁ×ðľ³æ (ÕýʽдÊÖ)

¡¾´ð°¸¡¿Ó¦Öú»ØÌû

¡ï ¡ï ¡ï
¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
jjdg: ½ð±Ò+1, ¸Ðл²ÎÓë 2013-01-10 10:38:19
Abla: ½ð±Ò+2 2013-01-10 14:29:57
´ÓÏÖÔڵijÌÐòÉÏ¿´£¬ÕâÒ»¾ä
t[w_] = (2*Sqrt[3]/2)/(Sqrt[3]/2*x22[w] + Sqrt[3]/2*x11[w] - 3/4*x12[w] - x2[w]);
ÖдæÔÚ䶨ÒåµÄx2£¬»áµ¼Ö»­²»³öͼ£¬¼ì²éÒ»ÏÂÊÇ·ñÓдíÎó¡£
½«x2¸Ä³Éx21»òÕßx22Ö®ºó£¬plot¿ÉÒÔ»­Í¼ÊÇÒ»ÌõÖ±Ïß¡£´Ëʱ˵Ã÷³ÌÐòÓï·¨ÉÏûÓÐÎÊÌ⣬ΪʲôÊÇÒ»ÌõÖ±ÏßÐèÒªÄã´Ó³ÌÐòÂß¼­ÉϺÍÖÚ¶à²ÎÊýºÍº¯Êý¶¨ÒåÉÏ¿¼ÂÇÊÇ·ñÓÐÎÊÌâ¡£
ÕâÑùµÄÎÊÌâ·Ç±¾ÁìÓòµÄÈ˼¸ºõÎÞ·¨°ïÄãÁË£¬ÒòÎªÉæ¼°µ½×¨ÒµµÄ֪ʶδ±Ø¶¼ÖªµÀ¡£
3Â¥2013-01-10 06:34:00
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
²é¿´È«²¿ 8 ¸ö»Ø´ð

Abla

гæ (³õÈëÎÄ̳)

Ôõô¶¼Ã»ÓÐÈ˻ظ´°¡
2Â¥2013-01-09 14:20:36
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

walk1997

½ð³æ (ÖøÃûдÊÖ)

¡ï ¡ï
jjdg: ½ð±Ò+2, ÐÁ¿àÁË 2013-01-10 10:38:44
Õâ¸ö³ÌÐòÀïÃæ Äã×Ðϸ¿´Ï ÄãµÄÊäÈë
n1[w]  n2[w]  n[w] ÔÚСwÇé¿öÏ ²î²»¶à¾ÍÊǸöµ¥Î»¾ØÕó Äã×îºóËã³öÀ´µÄ×ÔÈ»²î²»¶àÊǸöÖ±Ïß
°Ñ»­µÄ·¶Î§¸ÄϾͺà ²»¹ý ¹À¼ÆÄãÊäÈëµÄ²ÎÊý¿ÉÄÜÓеãÎÊÌâ
£­--------------------------------------------------------------------------
Clear["Global`*"]
nh = 2.22
nl = 1.41
c = 3*10^8
dh = (692*10^-9)/(4*nh)
dl = (692*10^-9)/(4*nl)
ps = Cos[Pi/6]
a = Sqrt[1 - (1/(2*2.22))^2]
b = Sqrt[1 - (1/(2*1.41))^2]
p1 = a/2.22
p2 = b/1.41
k1[w_] := w/(3*10^8)*2.22*a
k2[w_] := w/(3*10^8)*1.41*b
n1[w_] := {{Cos[k1[w]*dh], I*1/p1*Sin[k1[w]*dh]}, {I*p1*Sin[k1[w]*dh],
    Cos[k1[w]*dh]}}
n2[w_] := {{Cos[k2[w]*dl], I*1/p2*Sin[k2[w]*dl]}, {I*p2*Sin[k2[w]*dl],
    Cos[k2[w]*dl]}}
n[w_] := n1[w].n2[w].n1[w].n2[w].n1[w].n2[w].n1[w].n2[w].n1[w].n2[
    w].n1[w];
x11[w_] := Part[n[w], 1, 1];
x12[w_] := Part[n[w], 1, 2];
x21[w_] := Part[n[w], 2, 1];
x22[w_] := Part[n[w], 2, 2];
t[w_] := (2*Sqrt[3]/2)/(Sqrt[3]/2*x22[w] + Sqrt[3]/2*x11[w] -
     3/4*x12[w] - x21[w]);
t1[w_] := Re[t[w]]
t2[w_] := Im[t[w]]
st[w_] := Sqrt[t1[w]^2 + t2[w]^2];
T[w_] := st[w]^2;
Plot[T[w], {w, 1*10^16, 1*10^16 + 10^15}]
£­----------------------------------------------------------------------------
4Â¥2013-01-10 09:22:51
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

walk1997

½ð³æ (ÖøÃûдÊÖ)

¶ÔÁË  ÉÏÃæ°ÑÄãµÄx2[w] Ëæ±ã¸Ä³ÉÁË x21[w]  Õâ¸ö¾ßÌåÊÇÄĸö¾ØÕóÔª ÐèÒªÄã×Ô¼º¸ÄÏÂ
5Â¥2013-01-10 09:23:54
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
×î¾ßÈËÆøÈÈÌûÍÆ¼ö [²é¿´È«²¿] ×÷Õß »Ø/¿´ ×îºó·¢±í
[¿¼²©] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +4 khieu8v8m0 2026-02-22 4/200 2026-02-23 06:46 by jsjzfl
[˶²©¼ÒÔ°] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 8rmuugja8q 2026-02-22 6/300 2026-02-23 06:39 by w4l55oybr1
[ÂÛÎÄͶ¸å] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 w89i99eaeh 2026-02-22 4/200 2026-02-23 06:36 by w4l55oybr1
[²©ºóÖ®¼Ò] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +4 khieu8v8m0 2026-02-22 5/250 2026-02-23 06:34 by w4l55oybr1
[¹«Åɳö¹ú] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 khieu8v8m0 2026-02-22 5/250 2026-02-23 06:29 by w4l55oybr1
[˶²©¼ÒÔ°] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +4 khieu8v8m0 2026-02-22 8/400 2026-02-23 06:24 by w4l55oybr1
[²©ºóÖ®¼Ò] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +6 3dfhjxgsh7 2026-02-22 8/400 2026-02-23 06:21 by w4l55oybr1
[¿¼ÑÐ] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +4 usprnugpzw 2026-02-21 10/500 2026-02-23 04:58 by 5jlh3qtdvx
[ÂÛÎÄͶ¸å] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 khieu8v8m0 2026-02-22 6/300 2026-02-23 02:08 by 5jlh3qtdvx
[¿¼²©] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +5 3dfhjxgsh7 2026-02-22 6/300 2026-02-23 02:04 by 5jlh3qtdvx
[½Ìʦ֮¼Ò] °æÃæ·Ñ¸Ã½»Âð +7 Æ»¹ûÔÚÄÄÀï 2026-02-22 8/400 2026-02-22 22:37 by otani
[»ù½ðÉêÇë] »ù½ðÕýÎÄ30Ò³Ö¸µÄÊDZ¨¸æÕýÎÄ»¹ÊÇÕû¸öÉêÇëÊé +5 successhe 2026-02-16 6/300 2026-02-22 21:38 by ɽÎ÷Ðü¿ÕË¿ÕÐüÎ
[»ù½ðÉêÇë] ÃæÉÏ¿ÉÒÔ³¬¹ý30Ò³°É£¿ +4 °¢À­¹±aragon 2026-02-22 4/200 2026-02-22 21:22 by ɽÎ÷Ðü¿ÕË¿ÕÐüÎ
[½Ìʦ֮¼Ò] ΪʲôÖйú´óѧ½ÌÊÚÃÇË®ÁËÄÇô¶àËùνµÄ¶¥»á¶¥¿¯£¬µ«»¹ÊÇ×ö²»³öÓîÊ÷»úÆ÷ÈË£¿ +5 »¶ÀÖËÌÒ¶Ýè 2026-02-21 5/250 2026-02-22 21:15 by ɽÎ÷Ðü¿ÕË¿ÕÐüÎ
[ÂÛÎÄͶ¸å] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +4 usprnugpzw 2026-02-21 6/300 2026-02-22 19:48 by w89i99eaeh
[¿¼ÑÐ] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 3dfhjxgsh7 2026-02-22 4/200 2026-02-22 16:52 by khieu8v8m0
[ÕÒ¹¤×÷] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 usprnugpzw 2026-02-22 3/150 2026-02-22 16:37 by khieu8v8m0
[¹«Åɳö¹ú] ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼± +3 usprnugpzw 2026-02-21 4/200 2026-02-22 16:27 by khieu8v8m0
[»ù½ðÉêÇë] ¡°ÈËÎÄÉç¿Æ¶øÂÛ£¬Ðí¶àѧÊõÑо¿»¹Ã»ÓдﵽÃñ¹úʱÆÚµÄˮƽ¡± +4 ËÕ¶«ÆÂ¶þÊÀ 2026-02-18 5/250 2026-02-22 16:07 by liangep1573
[»ù½ðÉêÇë] ÌåÖÆÄÚ³¤±²ËµÌåÖÆÄÚ¾ø´ó²¿·ÖÒ»±²×ÓÔڵײ㣬ÈçͬÄãÃÇÒ»Ñù´ó²¿·ÖÆÕͨ½ÌʦæÇÒÊÕÈëµÍ +9 ˲ϢÓîÖæ 2026-02-20 12/600 2026-02-21 10:39 by »¶ÀÖËÌÒ¶Ýè
ÐÅÏ¢Ìáʾ
ÇëÌî´¦ÀíÒâ¼û