| ²é¿´: 1675 | »Ø¸´: 2 | ||||
[½»Á÷]
ͶӰ̬ÃܶÈÓиºÖµ
|
| ±¾ÈËÓÃsmeagolËãÁ½µç¼«ÏµÍ³µÄͶӰ̬ÃܶÈʱ£¬Ä³Ð©Ô×ÓÉϵÄPDOS³öÏÖ¸ºÖµ£¬ÇëÎÊÓÐÈËÅöµ½ÕâÖÖÇé¿öÂð£¿ÓÖÈçºÎ½âÊÍÄØ£¿Ð»Ð»£¡ |
» ÊÕ¼±¾ÌûµÄÌÔÌûר¼ÍƼö
siestaÎÊÌâ |
» ²ÂÄãϲ»¶
ÇòÄ¥·ÛÌåʱÓöµ½ÁË´óµÄÎÊÌ⣬ÇëÖ¸½Ì£¡
ÒѾÓÐ15È˻ظ´
¹ýÄê×ßÇׯÝʱ¸ÐÊܵ½ÁËËù¿ªË½¼Ò³µµÄ±ÉÊÓÁ´
ÒѾÓÐ5È˻ظ´
ÇéÈ˽Ú×ÔÎÒ·´Ë¼£ºÔÚ°®ÇéÖÐÓйýÒź¶Âð£¿
ÒѾÓÐ5È˻ظ´
½ºº´óѧ½âÃ÷½ÌÊÚ¿ÎÌâ×éÕв©Ê¿Ñо¿Éú/²©Ê¿ºó
ÒѾÓÐ3È˻ظ´
» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍÆ¼ö£¬¶ÔÄúͬÑùÓаïÖú:
ʯīϩµÄ×Ü̬ÃܶÈÓë·Ö²¨Ì¬ÃܶÈ
ÒѾÓÐ25È˻ظ´
DOSCAR»Ì¬ÃܶÈ
ÒѾÓÐ16È˻ظ´
JPCCÐÞ»ØÒâ¼ûÖÐÌáµ½¹ØÓÚÄܼ¶µÄÎÊÌ⣬²»ÉõÀí½â£¬ÇóÖ¸µã!!!
ÒѾÓÐ13È˻ظ´
abinitÄÜ·ñ´¦ÀíÒ»¸öλÖñ»Á½ÖÖÔªËØÕ¼¾ÝµÄ¹ÌÈÜÌåµÄÄÜ´øºÍ̬ÃܶÈ
ÒѾÓÐ10È˻ظ´
ÓйØÌ¬ÃܶÈͼÏñ
ÒѾÓÐ5È˻ظ´
¡¾ÇóÖú³É¹¦¡¿Ôõô»³ö5¸öd¹ìµÀ·Ö±ð¶ÔÓ¦µÄ̬ÃܶÈ
ÒѾÓÐ23È˻ظ´
¡¾ÎÄÏ×ѧϰ¡¿JACSÉÏһƪ´¿DFT¼ÆËãµÄÎÄÏ×£º CI-NEB¼ÆË㣬Leuwdin²¼¾Ö·ÖÎö£¬Ì¬ÃܶȷÖÎö
ÒѾÓÐ30È˻ظ´
¡¾ÇóÖú¡¿abinitÈçºÎÄܵõ½m·ÖÁ¿µÄͶӰ̬Ãܶȣ¿
ÒѾÓÐ4È˻ظ´
¡¾ÇóÖú¡¿ÇóÖú£ºÓÉ̬ÃܶÈͼÈç´ËÍÆµ¼µÄµ¼µç»úÖÆ£¬ÈçºÎÀí½â£¿
ÒѾÓÐ19È˻ظ´
¡¾sobereva¸öÈËÎ¿µç×Ó¶¨ÓòÐÔµÄͼÐηÖÎö
ÒѾÓÐ56È˻ظ´
¡¾ÇóÖú¡¿MS£µ.£°¡¡Castep ¼ÆËã²»³ö²¿·Ö̬Ãܶȣ¨PDOS£©Ôõô°ì£¿£¨Õ¾ÄÚÓÐÈËÌáÎÊMS4.3£¬Î
ÒѾÓÐ19È˻ظ´
µç×ӽṹºÍ̬ÃܶÈÒÔ¼°ÄÜ´øÖ®¼äÓÐʲô¹ØÏµ?
ÒѾÓÐ6È˻ظ´
¡¾ÇóÖú¡¿ÔÚsiestaÖÐÔõô»µçÊÆ£¬¹ìµÀ£¬Í¶Ó°Ì¬ÃܶȵĿռä·Ö²¼¡¾Íê½á¡¿
ÒѾÓÐ5È˻ظ´
¡¾ÇóÖú¡¿ÔõÑùÓÉÄÜ´ø½á¹¹ºÍ̬Ãܶȿ´¼ÆËãµÄ½á¹¹ÊDz»ÊÇ¿ÉÄÜ´æÔÚ³¬µ¼ÏÖÏó
ÒѾÓÐ12È˻ظ´
» ÇÀ½ð±ÒÀ²£¡»ØÌû¾Í¿ÉÒԵõ½:
Î÷ºþ´óѧ2026ÄêÇï¼¾ÈëѧÎïÀíѧ¡¢¹âѧ¡¢µç×ÓÐÅÏ¢·½Ïò²©Ê¿ÉúÓÐÃû¶îËÙÀ´£¡£¡£¡
+2/224
´óÁ¬º£Ê´óѧÂÖ»úѧԺ²©Ê¿Ãû¶î1¸ö
+1/177
½¾ü¾üÒ½´óѧµÚ¶þ¸½ÊôÒ½Ôº£¨ÐÂÇÅÒ½Ôº£©È½Üç¿ÎÌâ×éÕÐÆ¸¿ÆÑÐÈËÔ±
+1/79
ºØµçÖж¨Î»ÓÚ¡°»ý¼«×÷Óá±£¬ÊDz»ÊǶԻù½ðί¹¤×÷²»¹»ÂúÒ⣿
+1/78
Áú·ïTai¡ª¡ªÐ´¸øÁµÈ˵ĵÚ100·âÇéÊé
+1/76
È˼äÑÌ»ð£¬ÊµÔò¾ÍÊÇ×·Çó×î¼òµ¥µÄ¿ìÀÖ
+1/74
º£ÄÏ´óѧº£Ñó¼¼ÊõÓë×°±¸Ñ§Ôº-¿ÆÑÐÖúÀíÕÐÆ¸£¨¿É¶Á²©£©Ä¤·ÖÀëË®´¦Àí·½Ïò
+1/34
Öйúũҵ´óѧ°²½Ü¿ÎÌâ×éÕÐÆ¸¿ÆÑÐÖúÀí£¨±íÏÖÓÅÒìÕß¿ÉÌṩ¶Á²©»ú»á£©
+1/27
°Ä´óÀûÑÇÂó¿¼Èð´óѧ(Macquarie University)¹ú¼Ê²©Ê¿Ë¶Ê¿È«¶î½±Ñ§½ð-¼ÆËã»ú-26ÄêÖпªÑ§
+1/15
´óÊåÕ÷»é
+1/14
ÉϺ£½»Í¨´óѧ-Äþ²¨¶«·½Àí¹¤´óѧÁªºÏÅàÑø²©Ê¿Éú
+1/13
¹ú¼Ò¡°Ë«Ò»Á÷¡±½¨Éè¸ßУ-ÄϾ©ÁÖÒµ´óѧ-¹ú¼Ò¼¶ÇàÄêÈ˲ÅÍÅ¶Ó ÕÐ2026¼¶ÉêÇ뿼ºËÖÆ²©Ê¿
+1/8
°ÄÃÅ´óѧÉúÎïҽѧӰÏñʵÑéÊÒ³ÏÕв©Ê¿Éú£¨2026Çï¼¾Èëѧ£©
+1/7
È«½±²©Ê¿ Ó¢¹úÀûÎïÆÖ´óѧ ¡Á ̨ÍåÇ廪´óѧ ÁªºÏÅàÑø
+1/7
Äþ²¨Åµ¶¡ºº´óѧÕÐÊÕ26ÄêÇï/27Äê´º¹Ì·ÏÐͬת»¯ÓëµÍ̼ұ½ð·½ÏòÈ«½±²©Ê¿Éú
+1/7
°Ä¿Æ´óÕÐÊÕ2026ÄêÇï¼¾Ò©ÎïµÝËÍ/ÉúÎï²ÄÁÏ·½Ïò˶ʿÑо¿Éú£¨3ÔÂ5ÈÕ18:00±¨Ãû½ØÖ¹£©
+1/6
µç×ӿƼ¼´óѧÀîÊÀ±ò¿ÎÌâ×éÕÐÆ¸´«¸ÐÆ÷·½Ïò²©Ê¿¼°²©Ê¿ºó
+1/6
Öб±´óѧ·ëÈð½ÌÊÚ*¿ªÉ½´óµÜ×Ó*ÕÐļ
+1/6
¹þ¹¤´ó£¨ÉîÛÚ£©¹ú¼Ò¼¶ÇàÄêÈ˲ŠÖÓÓ±½ÌÊÚ¿ÎÌâ×é ÐÂÔö26¼¶²©Ê¿Ãû¶î£¡»¶Ó±¨Ãû£¡
+1/5
Ä«¶û±¾´óѧ(QS13)¼±ÕÐCSC²©Ê¿(²¹ÆëÈ«½±)/·ÃÎÊѧÕß/²©Ê¿ºó(ÉúÎïҽѧ²ÄÁÏ/Æ÷¹ÙоƬ)
+1/3
zhangguangping
ľ³æ (ÖøÃûдÊÖ)
- 1STÇ¿Ìû: 23
- Ó¦Öú: 71 (³õÖÐÉú)
- ¹ó±ö: 0.031
- ½ð±Ò: 1973.1
- Ìû×Ó: 2681
- ÔÚÏß: 2128.8Сʱ
- ³æºÅ: 529624
¡ï
futiliu(½ð±Ò+1):лл²ÎÓë
WDD880227(½ð±Ò+1): ¸Ðл½»Á÷Ìáʾ 2012-02-28 15:35:57
futiliu(½ð±Ò+1):лл²ÎÓë
WDD880227(½ð±Ò+1): ¸Ðл½»Á÷Ìáʾ 2012-02-28 15:35:57
|
Õâ¸öÊÇÓÉÓÚ»ù×éµÄ²»Õý½»ÐÔµ¼Öµġ£Ñϸñ˵À´£¬Èç¹ûͶӰµÄʱºò²ÉÓÃÒ»¸öÒѾÕý½»µÄ»ù×éÀ´¶¨ÒåµÄ»°£¬¾Í»á±ÜÃâÕâ¸öÎÊÌ⣬µ«ÊÇÄǸöʱºòPDOSµÄÎïÀíÒâÒåûÓÐÏÖÔÚÃ÷È·¡£ËùÒÔÓе㡰ÓãºÍÐÜÕÆ²»¿É¼æµÃ¡±¡£ ¸ü¼ÓÏêϸµÄ½âÊÍ£¬ÎÒÏÂÃæÒýÓÃÈçÏ£º http://www.mail-archive.com/sies ... am.es/msg02951.html ------------------------------------------ Dear Siesta users, I have a problem understanding the output in a .PDOS output file for my system. I am getting negative values in the PDOS for the projection onto a lot of the basis functions. Perhaps my understanding is wrong, but surely this should not be? According to my understanding the PDOS onto a specific basis function should have peaks at the energies corresponding to the eigenfunctions to which it contributes. I restarted the PDOS calculation from the output files of a converged calculation and used 1 SCF iteration with 50x50x50 Monkhorst Pack grid. Regards, Rainer ------------------------------------------- Dear Rainer: When you are working with a non-orthogonal basis set, as is the case in Siesta, neither the PDOS nor the Mulliken population analysis are positive definite magnitudes. The reason is due to the fact that the PDOS is defined as: g_mu(eps) = sum_nu rho_mu,nu S_nu,mu delta(eps-eps_i) rho_mu,nu = sum_i C_mu,i C*_nu,i (i stands for the bands, S stands for the overlap matrix, and C stands for the coefficients of the wave function) and the non-diagonal elements of the density matrix might be negative. However, the term in the diagonal IS positive definite, and it is usually larger than the rest of the terms. Therefore, when the PDOS is negative the value should be small in absolute value. Hope this helps, Javier --------------------------------------- Dear Javier Thanks very much for your reply. This certainly helps me understand why there can be negative values in the PDOS, at least mathematically. But these negative values of PDOS are not physically meaningful, right? So how should I interpret them? Can one just invert them? I am getting negative values that are roughly the same size as the positive values, so I dont feel comfortable just disregarding them. Regards, Rainer ----------------------------------------- Dear Rainer: I do not think you can give any physical meaning to a large negative Projected Density Of States. The problem is rather fundamental. The solution should come from a redefinition of the PDOS as the projection over a basis of orthogonalized orbitals. That would imply a first transformation from our non-orthogonal basis set to a orthogonal one (I guess that you will have to multiply by the inverse of the overlap matrix somewhere). Hope this helps, Javier ================================= |
2Â¥2012-02-28 14:55:07
¡ï
futiliu(½ð±Ò+1): лл²ÎÓë
futiliu(½ð±Ò+1): лл²ÎÓë
|
Â¥Ö÷ÄãºÃ£¬´òÈÅÁË£¬ÎÒÓÃvaspËãµÄPDOSÒ²³öÏÖ¸ºÖµ£¬¿´µ½ÄãµÄÌû×Ó½øÀ´£¬µ«ÊÇÕâ¸öÎÊÌâûÓнâ¾ö·½·¨Âð£¿Ö»ÄÜÊÖ¶¯¸ÄÂ𣿠·¢×ÔСľ³æAndroid¿Í»§¶Ë |
3Â¥2016-10-26 21:59:41













»Ø¸´´ËÂ¥