²é¿´: 1659  |  »Ø¸´: 2

futiliu

ľ³æ (СÓÐÃûÆø)


[½»Á÷] ͶӰ̬ÃܶÈÓиºÖµ

±¾ÈËÓÃsmeagolËãÁ½µç¼«ÏµÍ³µÄͶӰ̬ÃܶÈʱ£¬Ä³Ð©Ô­×ÓÉϵÄPDOS³öÏÖ¸ºÖµ£¬ÇëÎÊÓÐÈËÅöµ½ÕâÖÖÇé¿öÂð£¿ÓÖÈçºÎ½âÊÍÄØ£¿Ð»Ð»£¡
»Ø¸´´ËÂ¥

» ÊÕ¼±¾ÌûµÄÌÔÌûר¼­ÍƼö

siestaÎÊÌâ

» ²ÂÄãϲ»¶

» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍÆ¼ö£¬¶ÔÄúͬÑùÓаïÖú:

» ÇÀ½ð±ÒÀ²£¡»ØÌû¾Í¿ÉÒԵõ½:

²é¿´È«²¿É¢½ðÌù

ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
¡ï
futiliu(½ð±Ò+1):лл²ÎÓë
WDD880227(½ð±Ò+1): ¸Ðл½»Á÷Ìáʾ 2012-02-28 15:35:57
Õâ¸öÊÇÓÉÓÚ»ù×éµÄ²»Õý½»ÐÔµ¼Öµġ£Ñϸñ˵À´£¬Èç¹ûͶӰµÄʱºò²ÉÓÃÒ»¸öÒѾ­Õý½»µÄ»ù×éÀ´¶¨ÒåµÄ»°£¬¾Í»á±ÜÃâÕâ¸öÎÊÌ⣬µ«ÊÇÄǸöʱºòPDOSµÄÎïÀíÒâÒåûÓÐÏÖÔÚÃ÷È·¡£ËùÒÔÓе㡰ÓãºÍÐÜÕÆ²»¿É¼æµÃ¡±¡£

¸ü¼ÓÏêϸµÄ½âÊÍ£¬ÎÒÏÂÃæÒýÓÃÈçÏ£º

http://www.mail-archive.com/sies ... am.es/msg02951.html

------------------------------------------

Dear Siesta users,

I have a problem understanding the output in a .PDOS output file for my
system.  I am getting negative values in the PDOS for the projection
onto a lot of the basis functions.  Perhaps my understanding is wrong,
but surely this should not be?  According to my understanding the PDOS
onto a specific basis function should have peaks at  the energies
corresponding  to the eigenfunctions to which it contributes.

I restarted the PDOS calculation from the output files of a converged
calculation and used 1 SCF iteration with 50x50x50 Monkhorst Pack grid.

Regards,
Rainer


-------------------------------------------

Dear Rainer:

   When you are working with a non-orthogonal basis set,
as is the case in Siesta, neither the PDOS nor the Mulliken
population analysis are positive definite magnitudes.

   The reason is due to the fact that the PDOS is defined
as:

   g_mu(eps) = sum_nu rho_mu,nu S_nu,mu delta(eps-eps_i)

   rho_mu,nu = sum_i C_mu,i C*_nu,i

(i stands for the bands, S stands for the overlap matrix,
and C stands for the coefficients of the wave function)
and the non-diagonal elements of the density matrix
might be negative.

   However, the term in the diagonal IS positive definite,
and it is usually larger than the rest of the terms.
Therefore, when the PDOS is negative the value should be
small in absolute value.

   Hope this helps,

       Javier



---------------------------------------

Dear Javier

Thanks very much for your reply.  This certainly helps me understand
why there can be negative values in the PDOS, at least mathematically.
But these negative values of PDOS are not physically meaningful, right?
So how should I interpret them?  Can one just invert them?   I am
getting negative values that are roughly the same size as the positive
values, so I dont feel comfortable just disregarding them.

Regards,
Rainer
-----------------------------------------

Dear Rainer:

   I do not think you can give any physical meaning
to a large negative Projected Density Of States.

   The problem is rather fundamental.
The solution should come from a redefinition
of the PDOS as the projection over a basis of
orthogonalized orbitals. That would imply
a first transformation from our
non-orthogonal basis set to a orthogonal one
(I guess that you will have to multiply
by the inverse of the overlap matrix somewhere).

    Hope this helps,

        Javier
=================================
2Â¥2012-02-28 14:55:07
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

ÅÝÅÝëë

гæ (СÓÐÃûÆø)


¡ï
futiliu(½ð±Ò+1): лл²ÎÓë
Â¥Ö÷ÄãºÃ£¬´òÈÅÁË£¬ÎÒÓÃvaspËãµÄPDOSÒ²³öÏÖ¸ºÖµ£¬¿´µ½ÄãµÄÌû×Ó½øÀ´£¬µ«ÊÇÕâ¸öÎÊÌâûÓнâ¾ö·½·¨Âð£¿Ö»ÄÜÊÖ¶¯¸ÄÂð£¿

·¢×ÔСľ³æAndroid¿Í»§¶Ë
3Â¥2016-10-26 21:59:41
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
Ïà¹Ø°æ¿éÌø×ª ÎÒÒª¶©ÔÄÂ¥Ö÷ futiliu µÄÖ÷Ìâ¸üÐÂ
ÐÅÏ¢Ìáʾ
ÇëÌî´¦ÀíÒâ¼û