24小时热门版块排行榜    

CyRhmU.jpeg
查看: 1541  |  回复: 8
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

jesseliuxl

金虫 (小有名气)

[求助] 初一的奥数题咋都这么难了啊

遇到一个初一的奥数题,搞了半天没搞出来,请高人帮忙,谢谢
回复此楼
生命不息折腾不止
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

why926565

铁杆木虫 (正式写手)

【答案】应助回帖

★ ★
jesseliuxl: 金币+2, ★★★很有帮助 2012-05-03 08:27:02
用VB编程如下:


9楼2012-05-02 20:25:47
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 9 个回答

dxwbucea

铁虫 (著名写手)

【答案】应助回帖

★ ★
感谢参与,应助指数 +1
soliton923(金币+2): 呵呵,初一的学生很少会编程的吧~谢谢你给出答案 2012-01-29 23:16:38
jesseliuxl(金币+2): 2012-01-30 10:20:00
正确答案是:81/110
编程计算的过程是:
j = 9;
a = Table[i*(i + 1), {i, 1, j}];
b = Table[Sum[Part[a, j], {j, 1, i}], {i, 1, 9}];
Sum[1/Part[b, i], {i, 1, 9}]
结果是81/110
2楼2012-01-29 21:25:24
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

orange9634

木虫 (正式写手)

【答案】应助回帖

感谢参与,应助指数 +1
jesseliuxl(金币+5): ★★★★★最佳答案 2012-01-30 10:19:41
1.   首先,这类题目通常的思路便是将分母变成连续数的乘积,以便拆项:
分母的通项公式是 D_n = Sum_{i=1}^{n} [i*(i+1)] = Sum_{i=1}^{n} [ i ] + Sum_{i=1}^{n} [ i^2 ]
那么,右侧这两个求和,分别是 高斯公式 与 平方和公式, 常识哦,分别为
[n*(1+n)]/2  和  [n*(n+1)*(2n+1)]/6
从而, D_n=[n*(n+1)*(n+2)]/3

2.  接下来 拆项,记通项为A_n, 则有A_n = 1/D_n = 3/2 *[1/n - 2/(n+1) + 1/(n+2)]= 3/2 *[1/(n*(n+1)) - 1/((n+1)*(n+2))]
注意这个拆项后的系数,是通过将1/n、1/(n+1) 和1/(n+2)的系数分别假设为未知数,然后求解线性方程组来确定的。这个实在简单,不再赘述。

3.  最后求和呗, S_m=Sum_{n=1}^{m}[ A_n ] = 3/2 * Sum_{n=1}^{m}[1/(n*(n+1)) - 1/((n+1)*(n+2))]
很明显咯,  S_m= 3/2 * [1/2-1/((m+1)*(m+2)) ]
令, m=9,   S_9=81/110
新年新气象
3楼2012-01-30 00:45:25
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

orange9634

木虫 (正式写手)

呵呵,如果不是初中,要你求的估计就是极限  3/4 了
新年新气象
4楼2012-01-30 00:55:11
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见