| 查看: 1106 | 回复: 5 | |||
[交流]
【求助】电子转移话题
|
|
请问各位大侠,电子转移的难易程度会与分子中原子间的键长有关吗? 比如对于N2O来说 (N1-N2-O1), N1-N2 键长为1.12 N1-O1 键长为1.18, 那么我想问,是否能得到这样的结论, N1转移到N2电子的能力 较O1转移到N2 的能力强? 万分感谢大家的帮助,感激不尽~~!! |
» 猜你喜欢
PbS量子点紫外吸收
已经有0人回复
理论计算合作
已经有4人回复
物理化学论文润色/翻译怎么收费?
已经有275人回复
小木虫的论文辅导靠谱吗?有没有用过的同学?
已经有1人回复
QE计算声子ph.out的Γ点出现虚频(-30cm-1)vasp计算没有
已经有0人回复
40-50万/年,中国散裂中子源诚聘计算模拟方向博士后
已经有81人回复
比利时鲁汶大学与国家留学基金委共同资助博士研究生CSC-KU Leuven PhD Scholarship
已经有0人回复
书籍求助:汽车市场营销理论与实务(电子版)——章小平
已经有0人回复
东方理-中科大联合博士生招聘
已经有0人回复
伦敦大学学院Benjamin Moss博士招收人工智能、原位光谱、催化相关26年博士生
已经有11人回复
» 本主题相关商家推荐: (我也要在这里推广)
» 本主题相关价值贴推荐,对您同样有帮助:
偶极子和偶极子之间的相互作用
已经有9人回复
求汉英文章中英文字体转换问题
已经有2人回复
请教电子转移的问题
已经有8人回复
pdf转换成word的问题
已经有4人回复
关于CVD转移石墨烯至绝缘衬底的问题
已经有15人回复
请教关于马库斯理论中的“转移积分”的计算问题~~~~~谢谢!!
已经有10人回复
【求助】使用Adobe PDF转换DWG至PDF的线宽问题
已经有4人回复
有关2007word转换成ptf格式的问题
已经有5人回复
急求:windos和linux系统间的文件转换问题?
已经有3人回复
关于endnote 数据库转移的问题
已经有9人回复
【讨论】CO与金属表面donation-back donation相互作用模型
已经有12人回复
» 抢金币啦!回帖就可以得到:
南京都市圈高校大龄离异博士征友
+2/522
深圳市人民医院活性天然产物研究方向诚招联合培养硕士生2-3
+1/271
导电高分子用什么工艺处理分子链的堆叠会更加规整???
+1/86
Analytical Science Advances(Wiley出版社)长期征稿中...
+1/81
天津大学化学系吴立朋课题组申请考核制博士招生/博后招聘
+1/77
最新看到一个观点:说高校教师的斩杀线是青基和面上
+1/71
加拿大卡尔加里大学 量子通信和信息方向 硕士/博士招生
+1/55
有南京的小伙伴吗,蹲个男朋友
+1/53
暨南大学理工学院 光子技术研究院段宣明团队申请制读博招生
+1/30
中科院深圳先进院成会明院士\唐永炳国家杰青团队招聘
+2/14
青岛大学 丁欣 课题组 招收2026秋化学博士1名
+1/13
天津大学化学系吴立朋课题组申请考核制博士招生/博后招聘
+1/12
天津大学化学系吴立朋课题组申请考核制博士招生/博后招聘-有机化学,金属有机
+1/10
长春工业大学 机电工程学院 韩玲 招收申请审核制2026年秋季入学博士生
+1/4
有多余纯化系统,20-200mm高压制备分离系统,配套齐全可对外代工、委托加工、项目合作
+1/4
论文投稿推荐
+1/3
山东大学集成电路学院博士招生1名
+1/2
电催化博士求职
+1/2
海南大学!海洋与极地地质团队长期招收博士和博士后
+1/1
武汉工程大学杰青张亚文/司锐教授团队招收催化能源方向2026年博士生
+1/1
2楼2011-03-24 01:06:03
3楼2011-03-24 10:45:02
|
谢谢您的回答。 我现在遇到这样的问题: N2O 吸附于金属活性位M上,形成 N1-N2-O1---M 的吸附态。我在研究该过程的电子转移过程中,发现, M作为一个大的电子接收体得到 73.3%的电子,而N2作为小的得电体得到 26.7%电子; N1 和O1作为电子供体,供电量为 46.7% 和53.3%。 问题来了。我改如何分析N2 得到的电子来源于谁呢? 是N1 还是O1呢? 我个人愚建:认为N2得到电子来源于N1,由于1)N1的供电能力强。2)N1-N2键长较N2-O1键长,电子易于N1-N2转移 。 3)M作为一个强大的得电体,完全得到O1的电子。 请帮忙分析下 , 谢谢您的帮忙!在此感激不尽啊! |
4楼2011-03-25 11:26:55
★
小木虫(金币+0.5):给个红包,谢谢回帖交流
小木虫(金币+0.5):给个红包,谢谢回帖交流
|
在N1-N2-O1---M中,这种电荷关系确实象我上面说的有σ键与π键,还有孤对电子,它们的电荷转移方向不一定相同,要分别去看电荷转移。 O1的电负性相对较大,σ与π估计都是拉电子,从整个体系来讲N1也会被拉走电子。O1由于它σ、π上面的电荷增多、屏蔽加大,其上的孤对电子能级升高,可以向M去配位、转移,所以M作为一个大的电子接收体得到73.3%的电子。 由于N1-N2-O1分子简单,σ、π会有对应的MO来表达,进一步研究这些MO,作出对应的电子密度以及电子密度差,就可以看到具体的电荷转移,甚至计算出转移量来。 比如,如果能取一小片金属活性位M来作计算模拟,就可以计算求得N1-N2-O1---M的ρ0,再分别计算分子片N1-N2-O1的ρ1和分子片M的ρ2,Δρ=ρ0-ρ1-ρ2,你就可以将Δρ在GV中看到配位键是怎样形成的,以及电荷转移的情形和量。 如果你能对某一个MO来划分求Δρ将更好。 既然是用量化,一切用计算结果、图形说话,不是仅从原子去说事。 [ Last edited by zhou2009 on 2011-3-25 at 16:25 ] |
5楼2011-03-25 16:22:07
6楼2011-03-27 19:15:35







回复此楼