| 查看: 3965 | 回复: 29 | |||||||
[交流]
【交流】N掺杂不能形成P型ZnO?已有14人参与
|
|
最近出版的APL发表了UCSB研究组Chris G. Van de Walle教授的论文Why nitrogen cannot lead to p-type conductivity in ZnO。[Appl. Phys. Lett. 95, 252105 (2009); doi: 10.1063/1.3274043]此研究一经发出变收到了凝聚态与材料物理领域的极大关注。他们的计算强烈的质疑以前的P型ZnO结果,并指出N掺杂能形成深能级,而不是之前广泛报道的浅受主,这说明使用N掺杂并不能形成P型ZnO。 事实上,早在去年[O. Bierwagen, T. Ive, C. G. Van de Walle, and J. S. Speck, Appl. Phys. Lett. 93, 242108 (2008)]的工作中,他们就指出之前P型ZnO很多结果并不可靠。不过,该项研究并未引起当时科学界的足够重视。然而,最近的很多工作都表明他们结果的正确性。他们的另外一些研究同时也证实Li, N, P, As, or Sb掺杂来实现受主,并实现p型掺杂的方式是错误的。[A. Janotti, E. Snow, and C. G. Van de Walle, Appl. Phys. Lett. 95, 172109 (2009)]. 把工作重新拉回到间隙子的掺杂方式中来。 —————————————————— 下面为转载 Dec 23, 2009 Computational scientists at the University of California, Santa Barbara (UCSB), have provided convincing evidence that nitrogen, which is widely believed to be a shallow acceptor in ZnO, is in fact a very deep acceptor and cannot lead to p-type conductivity. ZnO has been intensively pursued as an optoelectronic material, in hopes of developing it into a wide-band-gap light emitter that would compete with GaN-but with the advantage that large single-crystal substrates are commercially available. A large part of the effort has been directed at establishing p-type doping, which is very challenging in wide-band-gap oxides in general. Dozens of papers claiming observations of p-type conductivity have appeared in the scientific literature. However, independent verification of these reports has been lacking, as have convincing demonstrations of pn junctions. The UCSB team, consisting of John Lyons, Anderson Janotti, and Professor Chris Van de Walle, performed cutting-edge first-principles calculations based on the hybrid functional methodology. In an Applied Physics Letter published online today [Appl. Phys. Lett. 95, 252105 (2009); doi: 10.1063/1.3274043] they report that nitrogen acceptors have an ionization energy of 1.3 eV-much too large to enable p-type doping. They also address why the behavior of nitrogen has been misinterpreted in so many of the previous investigations. In optical studies, the near-band-gap photoluminescence line most commonly associated with nitrogen is now known to be caused by stacking faults. Optical absorption and emission associated with the nitrogen deep acceptor in fact occurs at much lower energies, at wavelengths that have been all but ignored in prior studies (see Figure). When it comes to electrical measurements of acceptor-doped ZnO, the researchers point out there are many potential pitfalls, as addressed in a UCSB paper published last year [O. Bierwagen, T. Ive, C. G. Van de Walle, and J. S. Speck, Appl. Phys. Lett. 93, 242108 (2008)], casting doubt on most of the p-type conductivity reports published to date. Does this mean that all hope for p-type ZnO has to be abandoned? “We are convinced that none of the substitutional acceptors (including Li, N, P, As, or Sb) will yield p-type conduction” commented Project Scientist Anderson Janotti. “Interstitial doping, on the other hand, still looks promising, although it may be difficult to accomplish in actual device fabrication.” UCSB results on fluorine doping were the subject of another recent publication [A. Janotti, E. Snow, and C. G. Van de Walle, Appl. Phys. Lett. 95, 172109 (2009)]. “Our finding that nitrogen is not a shallow acceptor will come as a disappointment to many who are excited about ZnO as an optoelectronic material” said Van de Walle. “However, we hope it will contribute to resolving the conflicting and controversial results that have plagued the literature, and will refocus ZnO research efforts on the many exciting applications that do not require ambipolar doping, such as transistors and sensors.” Optical absorption and emission associated with nitrogen, a deep acceptor in ZnO. The diagram, based on first-principles computations, illustrates optical absorption by nitrogen acceptors being triggered by green light (2.4 eV), and emission (photoluminescence) occurring at red wavelengths (1.7 eV). Previous optical investigations have focused on the energy range near the ZnO band gap (3.4 eV, UV), due to the misconception that nitrogen was a shallow acceptor. [ Last edited by dawnlight on 2010-1-24 at 22:03 ] |
» 收录本帖的淘帖专辑推荐
LED应用研究 | 半导体 LED等 | 文献欣赏 | ITO FTO etc |
» 猜你喜欢
博士申请都是内定的吗?
已经有7人回复
读博
已经有5人回复
之前让一硕士生水了7个发明专利,现在这7个获批发明专利的维护费可从哪儿支出哈?
已经有5人回复
博士读完未来一定会好吗
已经有29人回复
投稿精细化工
已经有4人回复
高职单位投计算机相关的北核或SCI四区期刊推荐,求支招!
已经有4人回复
导师想让我从独立一作变成了共一第一
已经有9人回复
心脉受损
已经有5人回复
Springer期刊投稿求助
已经有4人回复
小论文投稿
已经有3人回复
» 本主题相关商家推荐: (我也要在这里推广)
» 本主题相关价值贴推荐,对您同样有帮助:
PN结的形成和相关问题
已经有11人回复
界面掺杂调控取得新进展:ZnO单纳米线光电性能实现优质集成
已经有18人回复
真心求教:Cu2O掺杂过渡金属的磁性能。问题非常具体,希望懂的给指点一下
已经有8人回复
Al掺杂ZnO中Al的掺杂形成能
已经有3人回复
本征多晶硅是N型的还是P型的?
已经有7人回复
请教pn结深度相关问题
已经有6人回复
求助,使用MS计算不同比例N掺杂ZnO的禁带宽度,结果令人不解
已经有7人回复
掺杂化学势及形成能计算
已经有6人回复
ZnO被Ti4+取代后是n型还是p型
已经有4人回复
N型或P型半导体,杂质掺杂是身多少
已经有6人回复
半导体氧化锌薄膜
已经有15人回复
关于氧化锌发光的问题
已经有16人回复
掺杂后形成能的计算
已经有35人回复
p型 N掺杂ZnO研究进展**JACS文章***
已经有309人回复
Li/Na掺杂ZnO的的缺陷位置标记符号的意义
已经有9人回复
导电聚合物的n型掺杂p型掺杂是啥呀
已经有8人回复
ChinaNano归来的观感
已经有19人回复
水热法进行ZnO纳米结构掺杂
已经有16人回复
【请教】Ag掺杂ZnO的颜色
已经有15人回复

qfw_68
版主 (文坛精英)
有尾巴的青蛙
- 应助: 120 (高中生)
- 贵宾: 0.414
- 金币: 85711.6
- 散金: 3020
- 红花: 212
- 沙发: 7676
- 帖子: 39475
- 在线: 4851.7小时
- 虫号: 797958
- 注册: 2009-06-24
- 性别: GG
- 专业: 自然语言理解与机器翻译
- 管辖: 有奖问答

2楼2010-01-25 07:59:15
211985:mad:
木虫 (著名写手)
格格
- FPI: 1
- 应助: 0 (幼儿园)
- 金币: 3183.8
- 散金: 335
- 红花: 29
- 帖子: 2483
- 在线: 624.3小时
- 虫号: 881385
- 注册: 2009-10-23
- 性别: MM
- 专业: 运动生理学

3楼2010-01-25 13:48:24
pretender
银虫 (小有名气)
- 应助: 1 (幼儿园)
- 金币: 9.5
- 帖子: 137
- 在线: 64.5小时
- 虫号: 53066
- 注册: 2004-09-12
- 性别: GG
- 专业: 凝聚态物性 II :电子结构
4楼2010-01-28 17:21:14
元小雪
木虫 (职业作家)
- 应助: 0 (幼儿园)
- 贵宾: 0.947
- 金币: 2216.5
- 散金: 2484
- 红花: 2
- 帖子: 3767
- 在线: 124.5小时
- 虫号: 471521
- 注册: 2007-12-01
- 性别: MM
- 专业: 物理/

5楼2010-01-28 17:48:38
fukuafeng
金虫 (正式写手)
- 应助: 8 (幼儿园)
- 金币: 1299.2
- 散金: 32
- 红花: 2
- 帖子: 480
- 在线: 319.1小时
- 虫号: 857574
- 注册: 2009-09-26
- 专业: 电化学
6楼2010-01-29 10:53:20
7楼2010-01-30 13:24:41
exciton-wu
木虫 (正式写手)
- 应助: 0 (幼儿园)
- 金币: 2373.8
- 散金: 99
- 红花: 2
- 帖子: 492
- 在线: 198.5小时
- 虫号: 389015
- 注册: 2007-06-01
- 专业: 凝聚态物理

8楼2010-02-02 23:04:11
tan-tt
木虫 (小有名气)
- 应助: 2 (幼儿园)
- 金币: 4367.6
- 散金: 51
- 红花: 2
- 帖子: 230
- 在线: 131.3小时
- 虫号: 589937
- 注册: 2008-08-30
- 性别: GG
- 专业: 半导体材料物理与器件
★ ★ ★ ★ ★ ★
小木虫(金币+0.5):给个红包,谢谢回帖交流
dawnlight(金币+5):感谢分享,欢迎讨论,欢迎常来 2010-02-03 22:37
小木虫(金币+0.5):给个红包,谢谢回帖交流
dawnlight(金币+5):感谢分享,欢迎讨论,欢迎常来 2010-02-03 22:37
|
计算结果未必可靠吧,很多人没做出来ZnO-p掺杂,不代表就做不出来P掺杂。只是表明这个不是那么容易的,也许有些细节上的实验问题。 当然本人也是怀疑浙大关于P掺杂ZnO结果的证实性,之所以怀疑,是因为他们没有公开站出来反击这些怀疑,如果没有问题,给其他一些怀疑的人,寄一些P型ZnO,让他们去测试。不过也许是他们不屑这么做,但是,我就是怀疑他们。 关于计算N掺杂是否形成深能级,与p掺杂应该是不矛盾的吧。P掺杂,我以为主要是改变能带结构,是杂质的扩展态与原来的能带结构相互耦合的结果,而是否形成深能级,则与电离能之类的有关,是局域态的缺陷。二者未必是冲突的。(一些揣测) |
9楼2010-02-03 21:50:21
nanohappyyou
金虫 (正式写手)
- 应助: 3 (幼儿园)
- 贵宾: 0.018
- 金币: 709.3
- 红花: 13
- 帖子: 872
- 在线: 156.8小时
- 虫号: 194621
- 注册: 2006-02-23
- 性别: GG
- 专业: 半导体光电子器件
10楼2010-02-04 11:23:30













回复此楼


