| 查看: 512 | 回复: 2 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
Illusionist银虫 (正式写手)
|
[求助]
G09中的荧光计算部分的例子,第四部分
|
||
|
前面几步都已经顺利完成。但是第四步的时候,Opt=RCFC加入之后就会出错。只用opt就好使。我想知道rcfc对这一步计算在结果上会不会有影响。 谢谢 %chk=step4.chk # B3LYP/6-31+G(d,p) TD=(Read,NStates=6,Root=1) SCRF=(Solvent=Ethanol) Geom=Modify Guess=Read Opt=RCFC Acetaldehyde: excited state opt Modify geometry to break Cs symmetry since first excited state is A" 0 1 4 1 2 3 10.0 5 1 2 7 -50.0 Initialization pass. Cartesian force constants read from checkpoint file: step4.chk Length of force constants on CHK file is 0 NAT3TT is 14196 Error termination via Lnk1e in /home/gaussian//g09/l103.exe at Wed Nov 30 08:32:45 2011. 官网有这段话: Note that Cartesian force constants are only available on the checkpoint file after a frequency calculation. You cannot use this option after an optimization dies because of a wrong number of negative eigenvalues in the approximate second derivative matrix. In the latter case, you may want to start from the most recent geometry and compute some derivatives numerically (see below). ReadCartesianFC is a synonym for RCFC. 但是第三步并没有进行频率计算啊··· [ Last edited by Illusionist on 2011-11-30 at 08:46 ] |
» 猜你喜欢
内蒙古大学青年长江学者王蕾教授课题组2026年博士招聘,2-3人
已经有13人回复
多相催化-2026年CSC博士及洪堡合作博士后招生!
已经有0人回复
物理化学论文润色/翻译怎么收费?
已经有104人回复
中国地质大学(武汉)—国家级青年人才杨明教授组-招收博士-新能源材料化学及催化材料
已经有32人回复
求光催化产过氧化氢的PPT !!!毕业答辩需要
已经有1人回复
湖南大学招收锂离子电池、离子液体、高分子与凝胶材料、电催化方向博士生多名
已经有5人回复
关于五水硝酸铋还原得到单质铋的问题
已经有1人回复
山东省青年基金什么时候拨款
已经有32人回复
英国贝尔法斯特女王大学招收 2026 年 CSC/BBSRC phd 机器学习 催化剂设计方向
已经有0人回复
» 本主题相关价值贴推荐,对您同样有帮助:
碳热还原法制备荧光粉出现的问题
已经有18人回复
玻璃中双掺稀土离子,能量转移,荧光寿命,请教
已经有6人回复
荧光光谱中激发波长的选择
已经有8人回复
种植资源多样性及亲缘关系分析都要计算哪些数据呀
已经有6人回复
求荧光素确切分子式
已经有3人回复
文章中荧光定量图怎么贴上去的
已经有8人回复
求助~690合金晶界比例计算
已经有4人回复
G09中计算AIM计算过渡金属原子和氢原子间作用的问题
已经有7人回复
G09计算问题
已经有9人回复
G09集群计算结果的chk文件转换问题
已经有7人回复
G09怎么计算荧光效应和激发态的cis优化····
已经有9人回复
【求助】计算G09荧光例子时报错
已经有13人回复
【求助】按照G09说明书计算荧光出错。出在第二步上。
已经有13人回复
【求助】G09荧光光谱例子 运行出错
已经有25人回复
【求助】G09进行荧光光谱计算的例子 出错
已经有5人回复
【求助】同一个结构,G09和G03 opt计算的能量差别大吗?
已经有7人回复
Illusionist
银虫 (正式写手)
- 应助: 20 (小学生)
- 金币: 232.8
- 散金: 1001
- 红花: 15
- 帖子: 431
- 在线: 328.7小时
- 虫号: 1123329
- 注册: 2010-10-15
- 专业: 半导体晶体与薄膜材料
|
但是算例来看·第三步并没有计算什么震动啊······ Fluoresence example: Emission (Fluorescence) from First Excited State (n→π*) of Acetaldehyde Here we study the cycle: Acetaldehyde Excitation and Emission Cycle The primary process of interest is the emission, but this example shows how to study the complete cycle including the solvent effects. Step 1: Ground state geometry optimization and frequencies (equilibrium solvation). This is a standard Opt Freq calculation on the ground state including PCM equilibrium solvation. %chk=01-ac # B3LYP/6-31+G(d,p) Opt Freq SCRF=(Solvent=Ethanol) Acetaldehyde ground state 0 1 C C,1,RA X,2,1.,1,A O,2,RB,3,A,1,180.,0 X,1,1.,2,90.,3,0.,0 H,1,R1,2,A1,5,0.,0 H,1,R23,2,A23,5,B23,0 H,1,R23,2,A23,5,-B23,0 H,2,R4,1,A4,3,180.,0 RA=1.53643 RB=1.21718 R1=1.08516 R23=1.08688 R4=1.10433 A=62.1511 A1=110.51212 A23=109.88119 A4=114.26114 B23=120.56468 Step 2: Vertical excitation with linear response solvation. This is a TD-DFT calculation of the vertical excitation, therefore at the ground state equilibrium geometry, with the default solvation: linear response, non-equilibrium. We perform a single-point TD-DFT calculation, which defaults to non-equilibrium solvation. The results of this job will be used to identify which state or states are of interest and their ordering. These results give a reasonable description of the solvation of the excited state, but not quite as good as that from a state-specific solvation calculation. In this case, we see that the n->π* state is the first excited state. Next, we will use the state-specific method to produce a better description of the vertical excitation step. %chk=02-ac # B3LYP/6-31+G(d,p) TD=NStates=6 SCRF=(Solvent=Ethanol) Geom=Check Guess=Read Acetaldehyde: linear response vertical excited states 0 1 Step 3: State-specific solvation of the vertical excitation. This will require two job steps: first the ground state calculation is done, specifying NonEq=write in the PCM input section, in order to store the information about non-equilibrium solvation based on the ground state. Second, the actual state-specific calculation is done, reading in the necessary information for non-equilibrium solvation using NonEq=read. %chk=03-ac # B3LYP/6-31+G(d,p) SCRF=(Solvent=Ethanol,Read) Geom=Check Guess=Read Acetaldehyde: prepare for state-specific non-eq solvation by saving the solvent reaction field from the ground state 0 1 NonEq=write --link1-- %chk=03-ac # B3LYP/6-31+G(d,p) TD(NStates=6,Root=1) SCRF=(Solvent=Ethanol,StateSpecific,Read) Geom=Check Guess=Read Acetaldehyde: read non-eq solvation from ground state and compute energy of the first excited with the state-specific method 0 1 NonEq=read Step 4: Relaxation of the excited state geometry. Next, we perform a TD-DFT geometry optimization, with equilibrium, linear response solvation, in order to find the minimum energy point on the excited state potential energy surface. Since this is a TD-DFT optimization, the program defaults to equilibrium solvation. As is typical of such cases, the molecule has a plane of symmetry in the ground state but the symmetry is broken in the excited state, so the ground state geometry is perturbed slightly to break symmetry at the start of the optimization. %chk=04-ac # B3LYP/6-31+G(d,p) TD=(Read,NStates=6,Root=1) SCRF=(Solvent=Ethanol) Geom=Modify Guess=Read Opt=RCFC Acetaldehyde: excited state opt Modify geometry to break Cs symmetry since first excited state is A" 0 1 4 1 2 3 10.0 5 1 2 7 -50.0 |
3楼2011-11-30 11:44:44
2楼2011-11-30 09:31:11













回复此楼