|
|
★ 小木虫(金币+0.5):给个红包,谢谢回帖交流
我用大学数学做做吧,
引入两个拉格朗日乘子:L1和L2,构造
F = xyz + L1*(x+y+z)+ L2*(x^2+y^2+z^2 -6)
对F分别对x,y,z求导令其为0可得
yz +2*L2 * x + L1 =0 (1)
xz + 2*L2 *y +L1 =0 (2)
xy+2*L2*z +L1 =0 (3)
三式相加并反复利用x+y+z=0可得
xy+xz+yz + 3*L1+ 2*L2*(x+y+z) =0 =>
xy + z( x+y) +3*L1=0 =>
xy - z^2 +3*L1 =0 (4)
(3)-(4)得
z^2 +2*L2 *Z - 2*L1 =0 (5) =>
z^2 = 2*L1 -2*L2 *z 对x,y,z有同样的结论,由x^2+y^2+z^2 =6=>
6* L1 =6 => L1=1
由(5)可以解得
z or y or x = - L2 +(-) sqrt ( L2^2 +1 )
由x+y+z=0可知x,y,z不可能都相等,但只能取其2根之一,比如x,y不相等,则
x+y+z = -2* L2 +z =0
此时z只能为-L2+ (-) sqrt (L2^2+2), 所以有
9*L2^2 = L2^2 +1 => L2 = + (-) 1/2
代回去可得
L2= 1/2时 xyz =-2*L1 *z = -2
当L2 =-1/2时,xyz =-2*L1 *z =2
嗯好像比楼上的方法要繁琐很多啊,
罪过,不过不用用到韦达定理了。 |
|