| 查看: 1438 | 回复: 11 | ||
| 【奖励】 本帖被评价4次,作者lrj9987增加金币 3.25 个 | ||
[资源]
【资源】生物材料领域重要综述
|
||
|
近年来生物材料领域很经典的综述。 欢迎下载,评价 http://d.namipan.com/d/f0c0fa320 ... 3c086c291f6cf83c901 |
» 猜你喜欢
有大佬会合成重铬酸铵吗?
已经有2人回复
生活不会亏待每一个认真努力的人
已经有0人回复
生物物理、生物化学与分子生物学论文润色/翻译怎么收费?
已经有73人回复
把心放稳,生活自会给你答案
已经有0人回复
你真正的底气,是悄悄努力的每一天
已经有0人回复
求助文章是否已经被EI收录
已经有1人回复
斑马鱼孵化求助
已经有0人回复
投稿Elsevier的Neoplasia杂志,到最后选publishing options时页面空白,不能完成投稿
已经有23人回复
» 本主题相关商家推荐: (我也要在这里推广)
» 本主题相关价值贴推荐,对您同样有帮助:
《biomaterials》上最新一篇关于成体干细胞组织工程血管的综述
已经有49人回复
生物医用高分子材料领域最新(2001-2011)权威综述-Progress in Polymer Science
已经有72人回复
nature nanotechnology上发表的一片关于纳米药物输送载体的综述
已经有39人回复
一篇关于药物和基因靶向控释的综述(J Control Release, 2011)
已经有134人回复
Chem Soc Rev最新综述:纳米材料毒性
已经有304人回复
我所收藏的一些与生物材料相关的【化学进展】上的综述
已经有141人回复
分享一篇Advanced Materials上的综述:纳米材料在肿瘤成像与治疗中的应用
已经有240人回复
有课题是人工皮肤的吗?想请教下这方面比较好的综述
已经有9人回复
【交流】复合材料学报相关事宜
已经有15人回复
【交流】1998-2008年材料科学领域高被引论文
已经有9人回复
【有奖活动】~~~生物材料SCI论文写作及期刊投稿经验讨论专题~~~
已经有24人回复
纳米技术在生物医学领域中的难点
已经有50人回复
2006年一篇药物缓释方面的重要综述
已经有18人回复
2楼2009-06-27 12:00:06
200多页的超过25M的综述,本版有人共享过。
★ ★
小木虫(金币+0.5):给个红包,谢谢回帖交流
薰衣草儿(金币+1,VIP+0):谢谢提醒~ 6-27 17:21
小木虫(金币+0.5):给个红包,谢谢回帖交流
薰衣草儿(金币+1,VIP+0):谢谢提醒~ 6-27 17:21
|
Biological materials: Structure and mechanical properties Marc André Meyers, a, , Po-Yu Chena, Albert Yu-Min Lina and Yasuaki Sekia aMaterials Science and Engineering Program, Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, United States Available online 18 May 2007. Abstract Most natural (or biological) materials are complex composites whose mechanical properties are often outstanding, considering the weak constituents from which they are assembled. These complex structures, which have risen from hundreds of million years of evolution, are inspiring Materials Scientists in the design of novel materials. Their defining characteristics, hierarchy, multifunctionality, and self-healing capability, are illustrated. Self-organization is also a fundamental feature of many biological materials and the manner by which the structures are assembled from the molecular level up. The basic building blocks are described, starting with the 20 amino acids and proceeding to polypeptides, polysaccharides, and polypeptides–saccharides. These, on their turn, compose the basic proteins, which are the primary constituents of ‘soft tissues’ and are also present in most biominerals. There are over 1000 proteins, and we describe only the principal ones, with emphasis on collagen, chitin, keratin, and elastin. The ‘hard’ phases are primarily strengthened by minerals, which nucleate and grow in a biomediated environment that determines the size, shape and distribution of individual crystals. The most important mineral phases are discussed: hydroxyapatite, silica, and aragonite. Using the classification of Wegst and Ashby, the principal mechanical characteristics and structures of biological ceramics, polymer composites, elastomers, and cellular materials are presented. Selected systems in each class are described with emphasis on the relationship between their structure and mechanical response. A fifth class is added to this: functional biological materials, which have a structure developed for a specific function: adhesion, optical properties, etc. An outgrowth of this effort is the search for bioinspired materials and structures. Traditional approaches focus on design methodologies of biological materials using conventional synthetic materials. The new frontiers reside in the synthesis of bioinspired materials through processes that are characteristic of biological systems; these involve nanoscale self-assembly of the components and the development of hierarchical structures. Although this approach is still in its infancy, it will eventually lead to a plethora of new materials systems as we elucidate the fundamental mechanisms of growth and the structure of biological systems. Article Outline 1. Introduction and basic overview of mechanical properties 2. Hierarchical organization of structure 3. Multifunctionality and self-healing 4. Self-organization and self-assembly 5. Basic building blocks (nano and microstructure of biological materials) 5.1. Molecular units 5.2. Biominerals 5.2.1. Biomineralization 5.2.2. Nucleation 5.2.3. Morphology 5.3. Proteins (polypeptides) 5.3.1. Collagen 5.3.2. Keratin 5.3.3. Actin and myosin 5.3.4. Elastin 5.3.5. Resilin and abductin 5.3.6. Other proteins 5.4. Polysaccharides 5.4.1. Chitin 5.4.2. Cellulose 6. Biological ceramics and ceramic composites 6.1. Sponge spicules 6.2. Shells 6.2.1. Nacreous shells 6.2.1.1. Growth of abalone (Haliotis rufescens) nacre 6.2.1.2. Mechanical properties of abalone nacre 6.2.2. Conch (Strombus gigas) shell 6.2.3. Giant clam (Tridacna gigas) 6.3. Shrimp hammer 6.4. Marine worm teeth 6.5. Bone 6.5.1. Structure 6.5.2. Elastic properties 6.5.3. Strength 6.5.4. Fracture and fracture toughness of bone 6.6. Teeth 6.6.1. Structure and properties 6.6.2. Growth and hierarchical structure of elephant tusk 6.7. Nano-scale effects in biological materials 6.8. Multi-scale effects 7. Biological polymers and polymer composites 7.1. Ligaments 7.2. Silk 7.3. Arthropod exoskeletons 7.4. Keratin-based materials: hoof and horn 8. Biological elastomers 8.1. Skin 8.2. Muscle 8.3. Blood vessels 8.3.1. Non-linear elasticity 8.3.2. Residual stresses 8.4. Mussel byssus 8.5. Cells 8.5.1. Structure and mechanical properties 8.5.2. Mechanical testing 8.5.3. Cell motility, locomotion, and adhesion 9. Biological cellular materials 9.1. Basic equations 9.2. Wood 9.3. Beak interior 9.3.1. Toucan and hornbill beaks 9.3.2. Modeling of interior foam (Gibson–Ashby constitutive equations) 9.4. Feather 10. Functional biological materials 10.1. Gecko feet and other biological attachment devices 10.2. Structural colors 10.2.1. Photonic crystal arrays 10.2.2. Thin film interference 10.3. Chameleon 11. Bioinspired materials 11.1. Traditional biomimetics 11.1.1. Aerospace materials 11.1.2. Building designs 11.1.3. Fiber optics and micro-lenses 11.1.4. Manufacturing 11.1.5. Water collection 11.1.6. Velcro 11.1.7. Gecko feet 11.1.8. Abalone 11.1.9. Marine adhesives 11.2. Molecular-based biomimetics 12. Summary and conclusions Acknowledgements References |
3楼2009-06-27 12:37:55
4楼2009-06-27 15:50:50
5楼2009-06-30 11:41:31
6楼2009-07-01 11:53:17
7楼2009-07-01 12:35:24
8楼2009-07-01 18:39:22
10楼2009-07-02 09:21:50
12楼2010-05-20 16:38:24
简单回复
南方嘉木8969楼
2009-07-02 01:59

qiu200072411楼
2010-05-20 10:17












回复此楼