CyRhmU.jpeg
²é¿´: 29493  |  »Ø¸´: 132
¡¾½±Àø¡¿ ±¾Ìû±»ÆÀ¼Û30´Î£¬×÷ÕßzhangwjÔö¼Ó½ð±Ò 23.65 ¸ö
µ±Ç°Ö»ÏÔʾÂú×ãÖ¸¶¨Ìõ¼þµÄ»ØÌû£¬µã»÷ÕâÀï²é¿´±¾»°ÌâµÄËùÓлØÌû

zhangwj

ÈÙÓþ°æÖ÷ (Ö°Òµ×÷¼Ò)


[×ÊÔ´] ¹úÄÚÍâÖªÃûÉúÎï²ÄÁÏÑо¿×é½éÉÜ¡¾ÖؽðÊÕ¼¯ÖС¿

Çë¸÷λ³æÓѽ«×Ô¼ºÊìϤµÄÉúÎï²ÄÁϽìµÄÑо¿×é½éÉܸø´ó¼Ò£¬ÎÞÂÛÊǹúÄÚ»¹Êǹú¼ÊµÄ¶¼¿ÉÒÔ¡£
ÓÉÓÚÉúÎï²ÄÁÏÊÇÒ»¸öÉæ¼°µ½¶àÁìÓòµÄ½»²æÑ§¿Æ£¬¿ÉÄÜÓÐһЩÑо¿×é²»ÊÇÄÇôÎÅÃûåÚåÇ£¬µ«ÊÇÔÚijһÁìÓòÊǾßÓÐ×Ô¼ºµÄÑо¿ÌØÉ«ºÍÏ൱³öÉ«µÄ³É¹û¡£ÓÐЩºÜÖøÃûµÄ´óÑо¿×é´ÓʵÄÁìÓòÊ®·ÖµÄ¹ã·º£¬ÆäÖÐÓÐÓëÉúÎï²ÄÁÏÏà¹ØµÄÑо¿³É¹ûÒ²ºÜ³öÉ«£¬¿ÉÒÔ½«ÓëÉúÎï²ÄÁÏÏà¹ØµÄÄÚÈÝÌáÈ¡³öÀ´£¬µ¥¶À½éÉÜ¡£
ÏÂÃæÁгö¸ñʽ²¢¾ÙÀý¹©´ó¼Ò²Î¿¼£¬º£ÍâµÄ×éÇëÓÃÓ¢ÎÄ£¬¹úÄÚµÄ×é¿ÉÒÔʹÓÃÖÐÎÄ£¬µ«×îºÃ»¹ÊÇʹÓÃÓ¢ÎÄ¡£
Çë¸úÌùµÄ³æÓÑ×îºÃ¸¶³öÒ»¶¨µÄÀͶ¯£¬°´¸ñʽ½«ÄÚÈÝÕûÀíºÃ¡£»¶Ó­Ìṩ±¦¹óÒâ¼û¡£

±¾ÌûµÄÄ¿µÄÊÇÏ£ÍûΪ±¨¿¼Ñо¿Éú£¬³ö¹úÁôѧ£¬Ñ°Ç󲩺óλÖúÍÇóÖ°¾ÍÒµµÄ³æÓÑÌṩ²Î¿¼¡£

¡¾½±½ð¡¿
ÌṩÐÅÏ¢1~3½ð±Ò£»
ÊÕ¼¯ÕûÀí3¸ö½ð±Ò£»
°´¸ñʽÕûÀí5¸ö½ð±Ò£»
ÍêÈ«°´ÒªÇóÕûÀí7¸ö½ð±Ò¡£

¡¾¸ñʽ¡¿
Group Name: (Ñо¿×éÃû³Æ£¬ÈôÎÞ£¬¿ÉÓÃgroup leaderÃû×ÖÃüÃû)
Group Leader:
Affiliation:
Research Interest:
Research Highlight:
Representative Publication: (²»¶àÓÚ5ƪ£¬°üÀ¨×¨Àû)
Webpage:

¡¾Ãû¼¡¿Çë¸úÌûǰÎñ±Ø¶ÔÕÕÎÞÖØ¸´£¡
Aldo  Boccaccini£¬Imperial College£¬µÚ116Â¥
Angela Belcher£¬Massachusetts Institute of Technology£¬µÚ100Â¥
Arto Urtti£¬University of Helsinki£¬µÚ97Â¥
Buddy Ratner£¬University of Washington£¬µÚ99Â¥
Chad Mirkin£¬Northwestern University£¬µÚ25Â¥
Charles M. Lieber£¬Harvard University£¬µÚ1Â¥
Christine E. Schmidt£¬The University of Texas at Austin£¬µÚ1Â¥
David Kaplan£¬Tufts University£¬µÚ103Â¥
Enrique Fernandez£¬Technical University of Catalonia£¬µÚ37Â¥
Frank Witte£¬Hannover Medical School£¬µÚ18Â¥
Henry J. Rack£¬Clemson University£¬µÚ53Â¥
Hongjie Dai (´÷ºê½Ü)£¬Stanford University£¬µÚ24Â¥
Huajian Gao (¸ß»ª½¡)£¬Brown University£¬µÚ16Â¥
Igor Zhitomirsky£¬McMaster University£¬µÚ101Â¥
Joelle AMEDEE£¬Universit¨¦ Victor Segalen Bordeaux 2£¬µÚ110Â¥
John Jansen£¬Radboud University Nijmegen£¬µÚ43Â¥
Josep A. Planell£¬Universitat Polit¨¨cnica de Catalunya£¬µÚ38Â¥
K de Groot£¬Free University£¬µÚ112Â¥
Kokubo Tadashi£¬Chubu University£¬µÚ36Â¥
Jan Feijen£¬University of Twente£¬µÚ49Â¥
Larry L. Hench£¬Imperial College£¬µÚ111Â¥
Laurent Sedel£¬Hôpital Lariboisi¨¨re£¬µÚ39Â¥
Lemaitre Jacques£¬Swiss Federal Institute of Technology Lausanne£¬µÚ35Â¥
Ma Jan£¬Nanyang Technological University£¬µÚ27Â¥
Min Wang(ÍõÃô)£¬The University of Hong Kong£¬µÚ113Â¥
Mitsuo Niinomi£¬Tohoku University£¬µÚ55Â¥
Molly Stevens£¬Imperial College£¬µÚ117Â¥
Nadrian C. Seeman£¬New York University£¬µÚ50Â¥
Paul K. Chu (Öì½£ºÀ)£¬City University of Hong Kong£¬µÚ1Â¥
Racquel Z . LeGeros£¬New York University£¬µÚ107Â¥
Robert Langer£¬Massachusetts Institute of Technology£¬µÚ46Â¥
Robin Wootton£¬University of Exeter£¬µÚ17Â¥
Samuel I. Stupp£¬Northwestern University£¬µÚ98Â¥
Shuming Nie (ÄôÊéÃ÷)£¬Emory University£¬µÚ22Â¥
Song Li£¬University of California, Berkeley£¬µÚ126Â¥
Subbu S. Venkatraman£¬Nanyang Technological University£¬µÚ26Â¥
Xiaohu Gao (¸ßÌ?»¢)£¬University of Washington£¬µÚ23Â¥
Xuejun Wen (ÎÄѧ¾ü)£¬Clemson University£¬µÚ124Â¥
Yang LENG£¬Hong Kong University of Science & Technology £¬µÚ106Â¥
³£   ½­£¬ÖпÆÔºÉϺ£¹èËáÑÎÑо¿Ëù£¬µÚ62Â¥
³Â¹úÇ¿£¬Ç廪´óѧ¡¢ÉÇÍ·´óѧ£¬µÚ54Â¥
³ÂÏþÅ©£¬±±¾©»¯¹¤´óѧ£¬µÚ65Â¥
³É¹úÏ飬Ìì½ò´óѧ£¬µÚ56Â¥
´Þ´ºÏ裬ºÓ±±¹¤Òµ´óѧ£¬µÚ105Â¥
´Þ¸£Õ«£¬Ç廪´óѧ£¬µÚ74Â¥
¶¡´«ÏÍ£¬ÖпÆÔºÉϺ£¹èËáÑÎÑо¿Ëù£¬µÚ60Â¥
¸ß³¤ÓУ¬Õã½­´óѧ£¬µÚ67Â¥
¹ËÖÒ࣬ËÄ´¨´óѧ£¬µÚ1Â¥
ºÂÓñÁÕ£¬ÖпÆÔº½ðÊôÑо¿Ëù£¬µÚ68Â¥
»Æ   éª£¬Î÷ÄϽ»Í¨´óѧ£¬µÚ40Â¥
¼Æ   ½££¬Õã½­´óѧ£¬µÚ77Â¥
ÀîÊÀÆÕ£¬Î人Àí¹¤´óѧ£¬µÚ52Â¥
¿×µÂÁ죬ÄÏ¿ª´óѧ£¬µÚ69Â¥
ÀîÓñ±¦£¬ËÄ´¨´óѧ£¬µÚ44Â¥
Áõ²ýʤ£¬»ª¶«Àí¹¤´óѧ£¬µÚ34Â¥
ÁõÐûÓ£¬ÖпÆÔºÉϺ£¹èËáÑÎÑо¿Ëù£¬µÚ61Â¥
ÁõÍò˳£¬Öйúº£Ñó´óѧ£¬µÚ51Â¥
³   ÐÛ£¬Î÷ÄϽ»Í¨´óѧ£¬µÚ114Â¥
Äô   ¿¡£¬±±¾©»¯¹¤´óѧ£¬µÚ76Â¥
ÅÓ´úÎÄ£¬Î人´óѧ£¬µÚ14Â¥
ÉêÓÐÇ࣬Õã½­´óѧ£¬µÚ30Â¥
Íõ   ¾ù£¬Öйú¿Æ¼¼´óѧ£¬µÚ109Â¥
ÍõÓ­¾ü£¬»ªÄÏÀí¹¤´óѧ£¬µÚ104Â¥
Ñî   Èñ£¬ÖпÆÔº½ðÊôÑо¿Ëù£¬µÚ68Â¥
ÓáÒ«Í¥£¬ÄÏ¿ª´óѧ£¬µÚ69Â¥
ÓÚÕñÌΣ¬Î÷±±ÓÐÉ«½ðÊôÑо¿Ôº£¬µÚ33Â¥
Ô¬   Ö±£¬ÄÏ¿ª´óѧ£¬µÚ70Â¥
ÕÅÁ¢Èº£¬±±¾©»¯¹¤´óѧ£¬µÚ75Â¥
ÕÅÐ˶°£¬ËÄ´¨´óѧ£¬µÚ1Â¥
֣ѧ±ó£¬ÖпÆÔºÉϺ£¹èËáÑÎÑо¿Ëù£¬µÚ60Â¥
ÖÓÖ¾Ô¶£¬ËÕÖÝ´óѧ£¬µÚ122Â¥
ÖìÓ¢½Ü£¬ÖпÆÔºÉϺ£¹èËáÑÎÑо¿Ëù£¬µÚ66Â¥

¡¾Õ÷¼¯Ãû¼¡¿8½ð±Ò£¡
William Bonfield£¬University of Cambridge£¬
²Ü°¢Ãñ£¬Öйú¿ÆÑ§ÔºÉϺ£Óлú»¯Ñ§Ñо¿Ëù£¬
µËÕý»ª£¬Öйú¿ÆÑ§Ôº³É¶¼Óлú»¯Ñ§·ÖÔº£¬
¶Å¸£Ê¤£¬±±¾©´óѧ£¬
¸ÊÖ¾»ª£¬Öйú¿ÆÑ§Ôº»¯Ñ§Ñо¿Ëù£¬
¸ß¼Ò³Ï£¬ÖØÇì´óѧ£¬
¹ËÖÒ࣬ËÄ´¨´óѧ£¬
¹ØÉÜ¿µ£¬Ö£ÖÝ´óѧ£¬
»ÆÊÀÎÄ£¬Î人´óѧ£¬
½­   À×£¬ÖпÆÔº»¯Ñ§Ëù£¬
½¯ÎýȺ£¬ÄϾ©´óѧ£¬
½ð   ÑÒ£¬µÚËľüÒ½´óѧ£¬
¾°åÚ±ó£¬Öйú¿ÆÑ§Ôº³¤´ºÓ¦Óû¯Ñ§Ñо¿Ëù£¬
ÀîÏþ¹â£¬Ê×¶¼Ò½¿Æ´óѧ£¬
Àî×Ó³¼£¬±±¾©´óѧ£¬
Âí½¨±ê£¬Ìì½òÀí¹¤´óѧ£¬
Ê·ÁÖÆô£¬ÄÏ¿ª´óѧ£¬
˧ÐÄÌΣ¬ÖÐɽ´óѧ£¬
Íõ   ¾ù£¬Öйú¿ÆÑ§¼¼Êõ´óѧ£¬
ÍõÉí¹ú£¬ÖпÆÔº»¯Ñ§Ëù£¬
ÎÌ   ½Ü£¬Î÷ÄϽ»Í¨´óѧ£¬
ÞÉ͢쳣¬ÖйúÒ©Æ·ÉúÎïÖÆÆ·¼ì¶¨Ëù£¬
ÕŶþÁÖ£¬ÉòÑô½ðÊôÑо¿Ëù£¬
ÕÅÏÈÕý£¬Î人´óѧ£¬
Ö£Óñ·å£¬±±¾©´óѧ£¬
ÖÓÕñÁÖ£¬Î人´óѧ£¬
ÖÓÖ¾Ô¶£¬ËÕÖÝ´óѧ£¬
׿ÈÊϲ£¬Î人´óѧ£¬

¾ÙÀý1£º

Group Name:
Plasma Laboratory

Group Leader:
Paul K. Chu

Affiliation:
City University of Hong Kong

Research Interest:
Using Plasma Immersion Ion Implantation - Deposition (PIII-D) technique to synthesize thin films and modify the surface properties of materials for biomedical applications.

Research Highlight:
Significant progress has been made to develop more biocompatible artificial heart, cardiovascular, and blood vessel stent materials and catheters. Crystalline silicon wafers can be made bioactive and conducive to the growth of apatite (bone) using hydrogen plasma implantation. This is a significant development enabling better integration of biosensors and bioMEMS with human tissues. Using patent pending plasma surface modification and thermal treatment technologies, the leaching of toxic Ni from NiTi is significantly mitigated while the shape memory and super-elastic properties can be tailored and retained. These inventions have led to another pending patent on a ¡°gradual correction"surgical technique that obviates the need for multiple surgeries for patients with spinal deformities like scoliosis and major back injuries. Plasma-sprayed TiO2 coatings have been made bioactive for the first time using a special fabrication process involving plasma implantation, nanofabrication technology, and UV irradiation. This is a significant development as plasma-sprayed titanium dioxide coatings have always been regarded as bio-inert. The novel nano-structured TiO2 coatings support the growth of bones and the work has profound impact on artificial prostheses and orthopedic materials.

Representative Publication:
1) P. K. Chu and X. Y. Liu (Editors), Biomaterials Fabrication and Processing Handbook, CRC Press / Taylor and Francis, Boca Raton, USA (2008).
2) J. Jiang, K. F. Huo, Z. W. Wu, et al., Silicon Induced DNA Damage Pathway and Its Modulation by Titanium Plasma Immersion Ion Implantation, Biomaterials, Vol. 29, No. 5, Pages: 544-550 (2008).
3) Zhang W, Chu PK, Ji JH, et al., Plasma Surface Modification of Poly vinyl chloride for Improvement of Antibacterial Properties, Biomaterials, Vol. 27, No. 1 Pages: 44-51 (2006).
4) X. Y. Liu, P. K. Chu, and C. X. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Materials Science and Engineering: Reports, Vol. 47, No. 2-4, Pages: 49-121 (2004).
5) P. K. Chu, J. Y. Chen, L. P. Wang, et al., Plasma Surface Modification of Biomaterials, Materials Science & Engineering: Reports, Vol. 36, No. 5-6, Pages: 143-206 (2002).

Webpage
http://www.cityu.edu.hk/ap/plasma/default.htm

¾ÙÀý2£º

Group Name:
The Schmidt Lab

Group Leader:
Christine E. Schmidt

Affiliation:
The University of Texas at Austin

Research Interest:
Semiconductor-Cell Interfaces; Biomimetic Synthetic Polymers; Natural-Based Biomaterials; Mechanisms of Cell Migration; Genetic Strategies for Tissue Repair

Research Highlight:
The group are working in collaboration with scientists with different backgrouds to better understand and repair tissues in the nervous and cardiovascular systems. Most of their current research is applied to the nervous system. They analysed various biomaterials (e.g., an electrically conducting polymer) that can be used to specifically stimulate, and guide, nerves to regrow their severed axons. They also studied the mechanisms of axon extension and nerve repair so that we can better design devices to help promote regeneration. Ultimately, nerve guidance channels (conduits) could be used to aid the repair of damaged peripheral nerves, such as would be required for facial and hand reconstruction, and ultimately, could be used to aid the regeneration of damaged spinal cord. In the cardiovascular system, they have used advanced cell culture approaches and a novel biomaterial scaffold (acellular vascular tissue) in an attempt to grow a living blood vessel. This vascular graft could ultimately be used for blood vessel reconstruction procedures (e.g., coronary artery bypass surgeries).

Representative Publication:
1) Guimard, N., N. Gomez, C.E. Schmidt (2007). Conducting Polymers in Biomedical Applications. Progress in Polymer Science. 32: 876-921.
2) Gomez, N., J.Y. Lee, J.D. Nickels, C.E. Schmidt (2007). Micropatterned Polypyrrole: Combination of Electrical and Topographical Characteristics for Stimulation of Cells. Advanced Functional Materials. 17: 1645-1653.
3) Sanghvi, A.B., K.P-H. Miller, A.M. Belcher, C.E. Schmidt (2005). Biomaterials functionalization using a novel peptide that selectively binds to an electrically conducting polymer. Nature Materials. 4: 496-502.
4) Winter, J.O., T.Y. Liu, B.A. Korgel, C.E. Schmidt (2001). Biomolecule-directed interfacing between semiconductor quantum dots and nerve cells. Advanced Materials.13: 1673-1677.
5) Schmidt, C.E., V.R. Shastri, J.P. Vacanti, and R. Langer (1997). Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences. USA 94: 8948-8953.

Webpage:
http://www.bme.utexas.edu/faculty/schmidt/index.html

¾ÙÀý 3£º

Group Name:
Lieber Research Group

Group Leader:
Charles M. Lieber

Affiliation:
Harvard University

Research Interest (Specified):
Bio-Nano Interface: Biological/Chemical Sensing includes Single particle detection, Large-scale addressable arrays, Detection of disease biomarkers and Small molecule detection. Nanodevice-Cell Hybrid Structures. Assembly & Interconnection.

Research Highlight:
They have pioneered the underlying science and application of nanoscale field-effect transistors for real-time label-free electrical detection of biological and chemical species in fluid solution. Nanowire devices represent nearly ideal sensor elements since their sizes are matched to that of biological macromolecules. Current interests are focused primarily on detection within the context of biological systems, although our projects range from ones pushing fundamental limits of detection to application of these devices to important biological problems such as detection of diseases and biowarfare agents. They have an active and growing program investigating this interface in several types of cells with a goal of creating systems that can process information using the unique attributes of both the biological and nanoelectronic components. They are also pursuing efforts that merge other complementary attributes of biology and nanotechnology. They are exploring the use of specific biomolecular interactions available in protein and protein/small molecule systems, to direct in a highly specific manner reversible and irreversible organization of nanostructures. Moreover, they are exploring biological systems as a means for 'building' new types of two-dimensional and three-dimensional interconnections between functional nanostructures and nanostructure arrays.

Representative Publication:
1) F. Patolsky, B.P. Timko, G. Zheng and C.M. Lieber, "Nanowire-Based Nanoelectronic Devices in the Life Sciences," MRS Bull. 32, 142-149 (2007).
2) F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng and C.M. Lieber, "Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays," Science 313, 1100-1104 (2006).
3) G. Zheng, F. Patolsky, Y. Cui, W.U. Wang and C.M. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," Nat. Biotechnol. 23, 1294-1301 (2005).
4) W.U. Wang, C. Chen, K. Lin, Y. Fang and C.M. Lieber, "Label-free detection of small-molecule-protein interactions by using nanowire nanosensors," Proc. Natl. Acad. Sci. USA 102, 3208-3212 (2005).
5) F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang and C.M. Lieber, "Electrical detection of single viruses," Proc. Natl. Acad. Sci. USA 101, 14017-14022 (2004).

Webpage:
http://cmliris.harvard.edu/

¾ÙÀý 4£º

Group Name:
¹ú¼ÒÉúÎïҽѧ²ÄÁϹ¤³Ì¼¼ÊõÑо¿ÖÐÐÄ

Group Leader:
ÖÐÐÄÃûÓþÖ÷ÈΣºÕÅÐ˶°
ÖÐÐÄÖ÷ÈΣº¹ËÖÒΰ

Affiliation:
ÒÀÍÐÓÚËÄ´¨´óѧ

Research Interest:
Ö÷Òª´ÓÊÂÉúÎïҽѧ²ÄÁÏ¡¢Ò½ÓÃÖ²ÈëÌå¡¢×éÖ¯¹¤³Ì¡¢¿ØÊÍϵͳ¼°ÏȽøÖÆÔ칤ÒÕ¼¼ÊõµÄÑо¿¡¢¿ª·¢ºÍÓ¦ÓÃ

Research Highlight:
http://www.biomater.com/yanjiukaifachengguo.asp

Representative Publication:
http://www.biomater.com/shangyehuachanpin/chanpinshow.asp?c_id=25
http://www.biomater.com/shangyehuachanpin/chanpinshow.asp?c_id=26

Webpage:
http://www.biomater.com/


[ Last edited by zhangwj on 2009-7-21 at 23:33 ]
»Ø¸´´ËÂ¥

» ÊÕ¼±¾ÌûµÄÌÔÌûר¼­ÍƼö

ÌÔÌù¼¯ ÉúÎï²ÄÁÏ ÉúÎï²ÄÁÏ ÉúÎï²ÄÁÏ
ÉúÎï²ÄÁÏÏà¹Ø ¿ÆÑÐ Ó«¹â±ê¼Ç ²ÄÁϼ¼Êõ½»Á÷×ÛºÏ
ÉúÎï²ÄÁÏ

» ²ÂÄãϲ»¶

» ±¾Ö÷ÌâÏà¹ØÉ̼ÒÍÆ¼ö: (ÎÒÒ²ÒªÔÚÕâÀïÍÆ¹ã)

» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍÆ¼ö£¬¶ÔÄúͬÑùÓаïÖú:

ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

lee2002hu

Ìú¸Ëľ³æ (ÖøÃûдÊÖ)


¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍÆ¼ö

ÔÞ~~~~~

[ Last edited by lee2002hu on 2008-10-9 at 10:48 ]
15Â¥2008-10-08 10:08:05
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
²é¿´È«²¿ 133 ¸ö»Ø´ð

¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍÆ¼ö

ºÜºÃµÄ×ÊÔ´¹þ£¬¶ÔÓÚÁªÏµ²©ºóµÈºÜºÃ¡£
2Â¥2008-09-20 14:54:18
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

sf3

½ð³æ (СÓÐÃûÆø)


¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍÆ¼ö

ûÓÐÈ˼ÌÐøÁËô£¿
3Â¥2008-09-21 14:50:35
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

s03435131

Í­³æ (СÓÐÃûÆø)


¡ï¡ï¡ï ÈýÐǼ¶,Ö§³Ö¹ÄÀø

zhangwj(½ð±Ò+0,VIP+0):׿ÀÏʦµ±È»Ë㣬ËûǣͷµÄÉúÎïÒ½Óø߷Ö×Ó²ÄÁϽÌÓý²¿ÖصãʵÑéÊҺܰô£¬¹À¼Æ°æÉÏÓÐÕâ¸öʵÑéÊҵģ¬µÈµÈ¿´£¬±Ï¾¹Á˽âµÄÈ˽éÉܱȽϺá£
Î人´óѧµÄ ׿ÈÊϲ  Ëã²»ËãÁË
5Â¥2008-09-22 10:26:41
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
¡î ÎÞÐǼ¶ ¡ï Ò»ÐǼ¶ ¡ï¡ï¡ï ÈýÐǼ¶ ¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶
ÐÅÏ¢Ìáʾ
ÇëÌî´¦ÀíÒâ¼û