CyRhmU.jpeg
²é¿´: 29486  |  »Ø¸´: 132
¡¾½±Àø¡¿ ±¾Ìû±»ÆÀ¼Û30´Î£¬×÷ÕßzhangwjÔö¼Ó½ð±Ò 23.65 ¸ö

zhangwj

ÈÙÓþ°æÖ÷ (Ö°Òµ×÷¼Ò)


[×ÊÔ´] ¹úÄÚÍâÖªÃûÉúÎï²ÄÁÏÑо¿×é½éÉÜ¡¾ÖؽðÊÕ¼¯ÖС¿

Çë¸÷λ³æÓѽ«×Ô¼ºÊìϤµÄÉúÎï²ÄÁϽìµÄÑо¿×é½éÉܸø´ó¼Ò£¬ÎÞÂÛÊǹúÄÚ»¹Êǹú¼ÊµÄ¶¼¿ÉÒÔ¡£
ÓÉÓÚÉúÎï²ÄÁÏÊÇÒ»¸öÉæ¼°µ½¶àÁìÓòµÄ½»²æÑ§¿Æ£¬¿ÉÄÜÓÐһЩÑо¿×é²»ÊÇÄÇôÎÅÃûåÚåÇ£¬µ«ÊÇÔÚijһÁìÓòÊǾßÓÐ×Ô¼ºµÄÑо¿ÌØÉ«ºÍÏ൱³öÉ«µÄ³É¹û¡£ÓÐЩºÜÖøÃûµÄ´óÑо¿×é´ÓʵÄÁìÓòÊ®·ÖµÄ¹ã·º£¬ÆäÖÐÓÐÓëÉúÎï²ÄÁÏÏà¹ØµÄÑо¿³É¹ûÒ²ºÜ³öÉ«£¬¿ÉÒÔ½«ÓëÉúÎï²ÄÁÏÏà¹ØµÄÄÚÈÝÌáÈ¡³öÀ´£¬µ¥¶À½éÉÜ¡£
ÏÂÃæÁгö¸ñʽ²¢¾ÙÀý¹©´ó¼Ò²Î¿¼£¬º£ÍâµÄ×éÇëÓÃÓ¢ÎÄ£¬¹úÄÚµÄ×é¿ÉÒÔʹÓÃÖÐÎÄ£¬µ«×îºÃ»¹ÊÇʹÓÃÓ¢ÎÄ¡£
Çë¸úÌùµÄ³æÓÑ×îºÃ¸¶³öÒ»¶¨µÄÀͶ¯£¬°´¸ñʽ½«ÄÚÈÝÕûÀíºÃ¡£»¶Ó­Ìṩ±¦¹óÒâ¼û¡£

±¾ÌûµÄÄ¿µÄÊÇÏ£ÍûΪ±¨¿¼Ñо¿Éú£¬³ö¹úÁôѧ£¬Ñ°Ç󲩺óλÖúÍÇóÖ°¾ÍÒµµÄ³æÓÑÌṩ²Î¿¼¡£

¡¾½±½ð¡¿
ÌṩÐÅÏ¢1~3½ð±Ò£»
ÊÕ¼¯ÕûÀí3¸ö½ð±Ò£»
°´¸ñʽÕûÀí5¸ö½ð±Ò£»
ÍêÈ«°´ÒªÇóÕûÀí7¸ö½ð±Ò¡£

¡¾¸ñʽ¡¿
Group Name: (Ñо¿×éÃû³Æ£¬ÈôÎÞ£¬¿ÉÓÃgroup leaderÃû×ÖÃüÃû)
Group Leader:
Affiliation:
Research Interest:
Research Highlight:
Representative Publication: (²»¶àÓÚ5ƪ£¬°üÀ¨×¨Àû)
Webpage:

¡¾Ãû¼¡¿Çë¸úÌûǰÎñ±Ø¶ÔÕÕÎÞÖØ¸´£¡
Aldo  Boccaccini£¬Imperial College£¬µÚ116Â¥
Angela Belcher£¬Massachusetts Institute of Technology£¬µÚ100Â¥
Arto Urtti£¬University of Helsinki£¬µÚ97Â¥
Buddy Ratner£¬University of Washington£¬µÚ99Â¥
Chad Mirkin£¬Northwestern University£¬µÚ25Â¥
Charles M. Lieber£¬Harvard University£¬µÚ1Â¥
Christine E. Schmidt£¬The University of Texas at Austin£¬µÚ1Â¥
David Kaplan£¬Tufts University£¬µÚ103Â¥
Enrique Fernandez£¬Technical University of Catalonia£¬µÚ37Â¥
Frank Witte£¬Hannover Medical School£¬µÚ18Â¥
Henry J. Rack£¬Clemson University£¬µÚ53Â¥
Hongjie Dai (´÷ºê½Ü)£¬Stanford University£¬µÚ24Â¥
Huajian Gao (¸ß»ª½¡)£¬Brown University£¬µÚ16Â¥
Igor Zhitomirsky£¬McMaster University£¬µÚ101Â¥
Joelle AMEDEE£¬Universit¨¦ Victor Segalen Bordeaux 2£¬µÚ110Â¥
John Jansen£¬Radboud University Nijmegen£¬µÚ43Â¥
Josep A. Planell£¬Universitat Polit¨¨cnica de Catalunya£¬µÚ38Â¥
K de Groot£¬Free University£¬µÚ112Â¥
Kokubo Tadashi£¬Chubu University£¬µÚ36Â¥
Jan Feijen£¬University of Twente£¬µÚ49Â¥
Larry L. Hench£¬Imperial College£¬µÚ111Â¥
Laurent Sedel£¬Hôpital Lariboisi¨¨re£¬µÚ39Â¥
Lemaitre Jacques£¬Swiss Federal Institute of Technology Lausanne£¬µÚ35Â¥
Ma Jan£¬Nanyang Technological University£¬µÚ27Â¥
Min Wang(ÍõÃô)£¬The University of Hong Kong£¬µÚ113Â¥
Mitsuo Niinomi£¬Tohoku University£¬µÚ55Â¥
Molly Stevens£¬Imperial College£¬µÚ117Â¥
Nadrian C. Seeman£¬New York University£¬µÚ50Â¥
Paul K. Chu (Öì½£ºÀ)£¬City University of Hong Kong£¬µÚ1Â¥
Racquel Z . LeGeros£¬New York University£¬µÚ107Â¥
Robert Langer£¬Massachusetts Institute of Technology£¬µÚ46Â¥
Robin Wootton£¬University of Exeter£¬µÚ17Â¥
Samuel I. Stupp£¬Northwestern University£¬µÚ98Â¥
Shuming Nie (ÄôÊéÃ÷)£¬Emory University£¬µÚ22Â¥
Song Li£¬University of California, Berkeley£¬µÚ126Â¥
Subbu S. Venkatraman£¬Nanyang Technological University£¬µÚ26Â¥
Xiaohu Gao (¸ßÌ?»¢)£¬University of Washington£¬µÚ23Â¥
Xuejun Wen (ÎÄѧ¾ü)£¬Clemson University£¬µÚ124Â¥
Yang LENG£¬Hong Kong University of Science & Technology £¬µÚ106Â¥
³£   ½­£¬ÖпÆÔºÉϺ£¹èËáÑÎÑо¿Ëù£¬µÚ62Â¥
³Â¹úÇ¿£¬Ç廪´óѧ¡¢ÉÇÍ·´óѧ£¬µÚ54Â¥
³ÂÏþÅ©£¬±±¾©»¯¹¤´óѧ£¬µÚ65Â¥
³É¹úÏ飬Ìì½ò´óѧ£¬µÚ56Â¥
´Þ´ºÏ裬ºÓ±±¹¤Òµ´óѧ£¬µÚ105Â¥
´Þ¸£Õ«£¬Ç廪´óѧ£¬µÚ74Â¥
¶¡´«ÏÍ£¬ÖпÆÔºÉϺ£¹èËáÑÎÑо¿Ëù£¬µÚ60Â¥
¸ß³¤ÓУ¬Õã½­´óѧ£¬µÚ67Â¥
¹ËÖÒ࣬ËÄ´¨´óѧ£¬µÚ1Â¥
ºÂÓñÁÕ£¬ÖпÆÔº½ðÊôÑо¿Ëù£¬µÚ68Â¥
»Æ   éª£¬Î÷ÄϽ»Í¨´óѧ£¬µÚ40Â¥
¼Æ   ½££¬Õã½­´óѧ£¬µÚ77Â¥
ÀîÊÀÆÕ£¬Î人Àí¹¤´óѧ£¬µÚ52Â¥
¿×µÂÁ죬ÄÏ¿ª´óѧ£¬µÚ69Â¥
ÀîÓñ±¦£¬ËÄ´¨´óѧ£¬µÚ44Â¥
Áõ²ýʤ£¬»ª¶«Àí¹¤´óѧ£¬µÚ34Â¥
ÁõÐûÓ£¬ÖпÆÔºÉϺ£¹èËáÑÎÑо¿Ëù£¬µÚ61Â¥
ÁõÍò˳£¬Öйúº£Ñó´óѧ£¬µÚ51Â¥
³   ÐÛ£¬Î÷ÄϽ»Í¨´óѧ£¬µÚ114Â¥
Äô   ¿¡£¬±±¾©»¯¹¤´óѧ£¬µÚ76Â¥
ÅÓ´úÎÄ£¬Î人´óѧ£¬µÚ14Â¥
ÉêÓÐÇ࣬Õã½­´óѧ£¬µÚ30Â¥
Íõ   ¾ù£¬Öйú¿Æ¼¼´óѧ£¬µÚ109Â¥
ÍõÓ­¾ü£¬»ªÄÏÀí¹¤´óѧ£¬µÚ104Â¥
Ñî   Èñ£¬ÖпÆÔº½ðÊôÑо¿Ëù£¬µÚ68Â¥
ÓáÒ«Í¥£¬ÄÏ¿ª´óѧ£¬µÚ69Â¥
ÓÚÕñÌΣ¬Î÷±±ÓÐÉ«½ðÊôÑо¿Ôº£¬µÚ33Â¥
Ô¬   Ö±£¬ÄÏ¿ª´óѧ£¬µÚ70Â¥
ÕÅÁ¢Èº£¬±±¾©»¯¹¤´óѧ£¬µÚ75Â¥
ÕÅÐ˶°£¬ËÄ´¨´óѧ£¬µÚ1Â¥
֣ѧ±ó£¬ÖпÆÔºÉϺ£¹èËáÑÎÑо¿Ëù£¬µÚ60Â¥
ÖÓÖ¾Ô¶£¬ËÕÖÝ´óѧ£¬µÚ122Â¥
ÖìÓ¢½Ü£¬ÖпÆÔºÉϺ£¹èËáÑÎÑо¿Ëù£¬µÚ66Â¥

¡¾Õ÷¼¯Ãû¼¡¿8½ð±Ò£¡
William Bonfield£¬University of Cambridge£¬
²Ü°¢Ãñ£¬Öйú¿ÆÑ§ÔºÉϺ£Óлú»¯Ñ§Ñо¿Ëù£¬
µËÕý»ª£¬Öйú¿ÆÑ§Ôº³É¶¼Óлú»¯Ñ§·ÖÔº£¬
¶Å¸£Ê¤£¬±±¾©´óѧ£¬
¸ÊÖ¾»ª£¬Öйú¿ÆÑ§Ôº»¯Ñ§Ñо¿Ëù£¬
¸ß¼Ò³Ï£¬ÖØÇì´óѧ£¬
¹ËÖÒ࣬ËÄ´¨´óѧ£¬
¹ØÉÜ¿µ£¬Ö£ÖÝ´óѧ£¬
»ÆÊÀÎÄ£¬Î人´óѧ£¬
½­   À×£¬ÖпÆÔº»¯Ñ§Ëù£¬
½¯ÎýȺ£¬ÄϾ©´óѧ£¬
½ð   ÑÒ£¬µÚËľüÒ½´óѧ£¬
¾°åÚ±ó£¬Öйú¿ÆÑ§Ôº³¤´ºÓ¦Óû¯Ñ§Ñо¿Ëù£¬
ÀîÏþ¹â£¬Ê×¶¼Ò½¿Æ´óѧ£¬
Àî×Ó³¼£¬±±¾©´óѧ£¬
Âí½¨±ê£¬Ìì½òÀí¹¤´óѧ£¬
Ê·ÁÖÆô£¬ÄÏ¿ª´óѧ£¬
˧ÐÄÌΣ¬ÖÐɽ´óѧ£¬
Íõ   ¾ù£¬Öйú¿ÆÑ§¼¼Êõ´óѧ£¬
ÍõÉí¹ú£¬ÖпÆÔº»¯Ñ§Ëù£¬
ÎÌ   ½Ü£¬Î÷ÄϽ»Í¨´óѧ£¬
ÞÉ͢쳣¬ÖйúÒ©Æ·ÉúÎïÖÆÆ·¼ì¶¨Ëù£¬
ÕŶþÁÖ£¬ÉòÑô½ðÊôÑо¿Ëù£¬
ÕÅÏÈÕý£¬Î人´óѧ£¬
Ö£Óñ·å£¬±±¾©´óѧ£¬
ÖÓÕñÁÖ£¬Î人´óѧ£¬
ÖÓÖ¾Ô¶£¬ËÕÖÝ´óѧ£¬
׿ÈÊϲ£¬Î人´óѧ£¬

¾ÙÀý1£º

Group Name:
Plasma Laboratory

Group Leader:
Paul K. Chu

Affiliation:
City University of Hong Kong

Research Interest:
Using Plasma Immersion Ion Implantation - Deposition (PIII-D) technique to synthesize thin films and modify the surface properties of materials for biomedical applications.

Research Highlight:
Significant progress has been made to develop more biocompatible artificial heart, cardiovascular, and blood vessel stent materials and catheters. Crystalline silicon wafers can be made bioactive and conducive to the growth of apatite (bone) using hydrogen plasma implantation. This is a significant development enabling better integration of biosensors and bioMEMS with human tissues. Using patent pending plasma surface modification and thermal treatment technologies, the leaching of toxic Ni from NiTi is significantly mitigated while the shape memory and super-elastic properties can be tailored and retained. These inventions have led to another pending patent on a ¡°gradual correction"surgical technique that obviates the need for multiple surgeries for patients with spinal deformities like scoliosis and major back injuries. Plasma-sprayed TiO2 coatings have been made bioactive for the first time using a special fabrication process involving plasma implantation, nanofabrication technology, and UV irradiation. This is a significant development as plasma-sprayed titanium dioxide coatings have always been regarded as bio-inert. The novel nano-structured TiO2 coatings support the growth of bones and the work has profound impact on artificial prostheses and orthopedic materials.

Representative Publication:
1) P. K. Chu and X. Y. Liu (Editors), Biomaterials Fabrication and Processing Handbook, CRC Press / Taylor and Francis, Boca Raton, USA (2008).
2) J. Jiang, K. F. Huo, Z. W. Wu, et al., Silicon Induced DNA Damage Pathway and Its Modulation by Titanium Plasma Immersion Ion Implantation, Biomaterials, Vol. 29, No. 5, Pages: 544-550 (2008).
3) Zhang W, Chu PK, Ji JH, et al., Plasma Surface Modification of Poly vinyl chloride for Improvement of Antibacterial Properties, Biomaterials, Vol. 27, No. 1 Pages: 44-51 (2006).
4) X. Y. Liu, P. K. Chu, and C. X. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Materials Science and Engineering: Reports, Vol. 47, No. 2-4, Pages: 49-121 (2004).
5) P. K. Chu, J. Y. Chen, L. P. Wang, et al., Plasma Surface Modification of Biomaterials, Materials Science & Engineering: Reports, Vol. 36, No. 5-6, Pages: 143-206 (2002).

Webpage
http://www.cityu.edu.hk/ap/plasma/default.htm

¾ÙÀý2£º

Group Name:
The Schmidt Lab

Group Leader:
Christine E. Schmidt

Affiliation:
The University of Texas at Austin

Research Interest:
Semiconductor-Cell Interfaces; Biomimetic Synthetic Polymers; Natural-Based Biomaterials; Mechanisms of Cell Migration; Genetic Strategies for Tissue Repair

Research Highlight:
The group are working in collaboration with scientists with different backgrouds to better understand and repair tissues in the nervous and cardiovascular systems. Most of their current research is applied to the nervous system. They analysed various biomaterials (e.g., an electrically conducting polymer) that can be used to specifically stimulate, and guide, nerves to regrow their severed axons. They also studied the mechanisms of axon extension and nerve repair so that we can better design devices to help promote regeneration. Ultimately, nerve guidance channels (conduits) could be used to aid the repair of damaged peripheral nerves, such as would be required for facial and hand reconstruction, and ultimately, could be used to aid the regeneration of damaged spinal cord. In the cardiovascular system, they have used advanced cell culture approaches and a novel biomaterial scaffold (acellular vascular tissue) in an attempt to grow a living blood vessel. This vascular graft could ultimately be used for blood vessel reconstruction procedures (e.g., coronary artery bypass surgeries).

Representative Publication:
1) Guimard, N., N. Gomez, C.E. Schmidt (2007). Conducting Polymers in Biomedical Applications. Progress in Polymer Science. 32: 876-921.
2) Gomez, N., J.Y. Lee, J.D. Nickels, C.E. Schmidt (2007). Micropatterned Polypyrrole: Combination of Electrical and Topographical Characteristics for Stimulation of Cells. Advanced Functional Materials. 17: 1645-1653.
3) Sanghvi, A.B., K.P-H. Miller, A.M. Belcher, C.E. Schmidt (2005). Biomaterials functionalization using a novel peptide that selectively binds to an electrically conducting polymer. Nature Materials. 4: 496-502.
4) Winter, J.O., T.Y. Liu, B.A. Korgel, C.E. Schmidt (2001). Biomolecule-directed interfacing between semiconductor quantum dots and nerve cells. Advanced Materials.13: 1673-1677.
5) Schmidt, C.E., V.R. Shastri, J.P. Vacanti, and R. Langer (1997). Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences. USA 94: 8948-8953.

Webpage:
http://www.bme.utexas.edu/faculty/schmidt/index.html

¾ÙÀý 3£º

Group Name:
Lieber Research Group

Group Leader:
Charles M. Lieber

Affiliation:
Harvard University

Research Interest (Specified):
Bio-Nano Interface: Biological/Chemical Sensing includes Single particle detection, Large-scale addressable arrays, Detection of disease biomarkers and Small molecule detection. Nanodevice-Cell Hybrid Structures. Assembly & Interconnection.

Research Highlight:
They have pioneered the underlying science and application of nanoscale field-effect transistors for real-time label-free electrical detection of biological and chemical species in fluid solution. Nanowire devices represent nearly ideal sensor elements since their sizes are matched to that of biological macromolecules. Current interests are focused primarily on detection within the context of biological systems, although our projects range from ones pushing fundamental limits of detection to application of these devices to important biological problems such as detection of diseases and biowarfare agents. They have an active and growing program investigating this interface in several types of cells with a goal of creating systems that can process information using the unique attributes of both the biological and nanoelectronic components. They are also pursuing efforts that merge other complementary attributes of biology and nanotechnology. They are exploring the use of specific biomolecular interactions available in protein and protein/small molecule systems, to direct in a highly specific manner reversible and irreversible organization of nanostructures. Moreover, they are exploring biological systems as a means for 'building' new types of two-dimensional and three-dimensional interconnections between functional nanostructures and nanostructure arrays.

Representative Publication:
1) F. Patolsky, B.P. Timko, G. Zheng and C.M. Lieber, "Nanowire-Based Nanoelectronic Devices in the Life Sciences," MRS Bull. 32, 142-149 (2007).
2) F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng and C.M. Lieber, "Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays," Science 313, 1100-1104 (2006).
3) G. Zheng, F. Patolsky, Y. Cui, W.U. Wang and C.M. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," Nat. Biotechnol. 23, 1294-1301 (2005).
4) W.U. Wang, C. Chen, K. Lin, Y. Fang and C.M. Lieber, "Label-free detection of small-molecule-protein interactions by using nanowire nanosensors," Proc. Natl. Acad. Sci. USA 102, 3208-3212 (2005).
5) F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang and C.M. Lieber, "Electrical detection of single viruses," Proc. Natl. Acad. Sci. USA 101, 14017-14022 (2004).

Webpage:
http://cmliris.harvard.edu/

¾ÙÀý 4£º

Group Name:
¹ú¼ÒÉúÎïҽѧ²ÄÁϹ¤³Ì¼¼ÊõÑо¿ÖÐÐÄ

Group Leader:
ÖÐÐÄÃûÓþÖ÷ÈΣºÕÅÐ˶°
ÖÐÐÄÖ÷ÈΣº¹ËÖÒΰ

Affiliation:
ÒÀÍÐÓÚËÄ´¨´óѧ

Research Interest:
Ö÷Òª´ÓÊÂÉúÎïҽѧ²ÄÁÏ¡¢Ò½ÓÃÖ²ÈëÌå¡¢×éÖ¯¹¤³Ì¡¢¿ØÊÍϵͳ¼°ÏȽøÖÆÔ칤ÒÕ¼¼ÊõµÄÑо¿¡¢¿ª·¢ºÍÓ¦ÓÃ

Research Highlight:
http://www.biomater.com/yanjiukaifachengguo.asp

Representative Publication:
http://www.biomater.com/shangyehuachanpin/chanpinshow.asp?c_id=25
http://www.biomater.com/shangyehuachanpin/chanpinshow.asp?c_id=26

Webpage:
http://www.biomater.com/


[ Last edited by zhangwj on 2009-7-21 at 23:33 ]
»Ø¸´´ËÂ¥

» ÊÕ¼±¾ÌûµÄÌÔÌûר¼­ÍƼö

ÌÔÌù¼¯ ÉúÎï²ÄÁÏ ÉúÎï²ÄÁÏ ÉúÎï²ÄÁÏ
ÉúÎï²ÄÁÏÏà¹Ø ¿ÆÑÐ Ó«¹â±ê¼Ç ²ÄÁϼ¼Êõ½»Á÷×ÛºÏ
ÉúÎï²ÄÁÏ

» ²ÂÄãϲ»¶

» ±¾Ö÷ÌâÏà¹ØÉ̼ÒÍÆ¼ö: (ÎÒÒ²ÒªÔÚÕâÀïÍÆ¹ã)

» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍÆ¼ö£¬¶ÔÄúͬÑùÓаïÖú:

ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
»ØÌûÖ§³Ö ( ÏÔʾ֧³Ö¶È×î¸ßµÄǰ 50 Ãû )

yyjcathy

½ð³æ (СÓÐÃûÆø)


¡ï
zhangwj(½ð±Ò+1,VIP+0):Ï£ÍûÄãÄܰÑbonfield½ÌÊÚµÄ×ÊÁÏÕûÀíÒ»ÏÂÀ´¸ú±¾Ìû£¬½«ÓÐÖØ½±£¡
½£ÇŵÄbonfield½ÌÊÚ×öµÄÒ²ºÜºÃ
ÖªµÀÇé¿öµÄ³öÀ´ËµËµ
7Â¥2008-09-23 09:09:21
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

xujb32

Òø³æ (ÖªÃû×÷¼Ò)


¡ï
zhangwj(½ð±Ò+1,VIP+0):»¶Ó­Ð³棬ÆÚ´ýÄãµÄ¹±Ïס«¡«
Â¥Ö÷ËѼ¯µÄ²ÄÁϲ»´í°¡£¬
·½±ã´ó¼Ò
¸Ð¼¤°¡
42Â¥2008-11-26 10:21:41
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

yyjcathy

½ð³æ (СÓÐÃûÆø)


¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍÆ¼ö

¡ï
zhangwj(½ð±Ò+1,VIP+0):ллÌṩÐÅÏ¢£¬Èç¹ûÄãÄܽéÉܸø´ó¼Ò£¬»áÓиü¶à½±ÀøÅ¶£¡
Î÷±±ÓÐÉ«½ðÊôÑо¿ÔºµÄÓÚÕñÌÎ
¾Ý˵²»´í
6Â¥2008-09-22 18:32:38
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

publishpapers

ľ³æ (ÕýʽдÊÖ)


¡ï ¡ï ¡ï
zhangwj(½ð±Ò+3,VIP+0):ллÌṩÐÅÏ¢£¬½øÒ»²½ÍêÉÆ
Group Name:
½ÌÓý²¿Ò½ÓÃÉúÎï²ÄÁϹ¤³ÌÑо¿ÖÐÐÄ£¬¹ú¼ÒÒ½ÓÃÉúÎï²ÄÁ϶¯Ô±ÖÐÐÄ

Group Leader:
Ëù³¤¼æÖ÷ÈΣºÁõ²ýʤ£¨³¤½­Ñ§Õß)

Affiliation:
ÒÀÍÐÓÚ»ª¶«Àí¹¤´óѧ
ÏÂÊôÒ»¸ö¹«Ë¾:ÉϺ£Èð°îÉúÎï²ÄÁÏÓÐÏÞ¹«Ë¾

Research Interest:
ÉúÎï²ÄÁϵÄÖÆ±¸ÓëÓ¦ÓÃÑо¿
34Â¥2008-11-22 01:01:40
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍÆ¼ö

ºÜºÃµÄ×ÊÔ´¹þ£¬¶ÔÓÚÁªÏµ²©ºóµÈºÜºÃ¡£
2Â¥2008-09-20 14:54:18
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

s03435131

Í­³æ (СÓÐÃûÆø)


¡ï¡ï¡ï ÈýÐǼ¶,Ö§³Ö¹ÄÀø

zhangwj(½ð±Ò+0,VIP+0):׿ÀÏʦµ±È»Ë㣬ËûǣͷµÄÉúÎïÒ½Óø߷Ö×Ó²ÄÁϽÌÓý²¿ÖصãʵÑéÊҺܰô£¬¹À¼Æ°æÉÏÓÐÕâ¸öʵÑéÊҵģ¬µÈµÈ¿´£¬±Ï¾¹Á˽âµÄÈ˽éÉܱȽϺá£
Î人´óѧµÄ ׿ÈÊϲ  Ëã²»ËãÁË
5Â¥2008-09-22 10:26:41
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

czb1981

ľ³æ (ÖøÃûдÊÖ)


¡ï ¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+3):лл£¡Çë°´ÕÕ¶¥Â¥¸ñʽÕûÀí£¬»áÓÐ×·¼Ó½±Àø£¡
zhangwj(½ð±Ò+3,VIP+0):ллÄãµÄ²¹³ä£¡
Group Name: Î÷ÄϽ»´ó²ÄÁÏÏȽø½ÌÓý²¿ÖصãʵÑéÊÒÉúÎï²ÄÁÏÓë±íÃæ¹¤³ÌÑо¿Ëù
Group Leader:»Æéª½ÌÊÚ
Affiliation:Î÷ÄϽ»Í¨´óѧ
Research Interest:È˹¤Ñª¹ÜºÍÈ˹¤ÐÄÔà°êĤ¼°±íÃæ¸ÄÐÔ
                         Ö÷ÒªÑо¿·½Ïò£º
                     1£© ÉúÎï²ÄÁϵıíÃæÉúÎ﹦ÄÜ»¯£»
                     2£©  ÏȽøÖ²ÈëÓë½éÈëÆ÷е£»
                     3£©  ¿É½µ½â½ðÊôÉúÎï²ÄÁÏÓëÆ÷е£»
                     4£©   ³¬Ó²¹¦Äܱ¡Ä¤¼°ÆäÔڹؼüÁìÓòµÄÓ¦ÓÃ

Research Highlight:
      Ñо¿Ëù²ÉÓÃÀë×ÓÊø·½·¨¶ÔÈ˹¤ÐÄÔà°êĤ²ÄÁϽøÐбíÃæ¸ÄÐÔ£¬Ñо¿ºÍºÏ³ÉTi-O±¡Ä¤ÒÔ¼°Ti-O/Ti-N¸´ºÏ±¡Ä¤ÉúÎï²ÄÁÏ£¬ÊǸÃÊÒÊ×ÏÈÌá³ö²¢ÊµÏֵġ£Ä¿Ç°ÒÑÈ¡µÃÑо¿³É¹û¶àÏÒÑ·¢±íÎÄÕÂ100ÓàÆª£¨ÆäÖÐ60ÓàÆª±»¹ú¼ÊȨÍþ¼ìË÷»ú¹¹SCI¡¢EI¡¢ISTPÊÕ¼£©£¬ÉêÇëÓë»ñµÃÖйú¼°¹ú¼Ê·¢Ã÷רÀû6ÏÈý´ÎÁÐÈë¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð³É¹ûÄ걨¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÓÅÐãÍÆ¹ãÏîÄ¿¼°¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð×ÊÖúÏîÄ¿ÓÅÐã³É¹û»ã±à£¨µÚÈý¼­£¬1996-2001£©¡£»ñµÃËÄ´¨Ê¡1998Äê¿Æ¼¼½ø²½½±¡¢½ÌÓý²¿¹Ç¸É½Ìʦ»ù½ðÓÅÐã³É¹û¡£ÔÚ¹ú¼ÒÖØµã»ù´¡Ñо¿¹æ»®ÏîÄ¿£¨¡°973¡±£©µÄÖÐÆÚÆÀÉóÖÐÒÔÁ¼ºÃµÄ½øÕ¹ÃûÁÐǰì¡£Ñо¿Ëù»Æéª½ÌÊÚÊÇÉúÎï²ÄÁϱíÃæ¸ÄÐÔÑо¿ÁìÓòµÄÖªÃûר¼Ò£¬²¿¼¶ÓÅÐã½Ìʦ£¬ÓÐÍ»³ö¹±Ï×µÄÖÐÇàÄêר¼Ò£¬¹úÎñÔºÌØÊâ½òÌù»ñµÃÕß¡£µ£ÈÎÖйú²ÄÁÏѧ»áÀíÊ¡¢¹ú¼ÊµÈÀë×ÓÌåÎïÀí»áÒé¡¢µÈÀë×ÓÌåÓ¦ÓÃίԱ»áÖ´ÐÐίԱ¡¢ËÄ´¨Ê¡ÉúÎïҽѧ¹¤³Ìѧ»á³£ÎñÀíÊ¡¢ËÄ´¨Ê¡¿Æ¼¼ÌüвÄÁϸ߼¼Êõ¹ËÎÊר¼Ò¡¢ËÄ´¨Ê¡Ñ§Êõ´øÍ·È˵ȡ£±»ÑûÇëÖ÷±àºÍ²Î¼Ó±àÐ´×¨ÖøÈý±¾£¬ÔÚ¹ú¼Ê»áÒéÉÏ×÷ÑûÇ뱨¸æ6´Î¡£
    Ñо¿ËùÏÖÓë¹úÄÚÍâ¶à¼Ò¿ÆÑлú¹¹½¨Á¢ÁË¿ÆÑкÏ×÷¹ØÏµ£¬¾ßÓй㷺µÄ¹ú¼ÊºÏ×÷¹ØÏµ¡£Æ½¾ùÿÄêÅɳöºÏ×÷Ñо¿ÈËÔ±2ÈË¡¢½ÓÊÕ¹úÍâѧÕßǰÀ´ºÏ×÷Ñо¿3ÈË¡£¸ÃÑо¿ÊÒÒÑÓëµÂ¹úRossendorfÑо¿ÖÐÐÄ¡¢ÃÀ¹úLaurence Berkeley¹ú¼ÒʵÑéÊÒ¡¢Ïã¸Û¿Æ¼¼´óѧ¡¢Ïã¸Û³ÇÊдóѧ¼°Ç廪´óѧ¡¢Ð­ºÍÒ½¿Æ´óѧ¡¢ÖйúÒ©Æ·ÉúÎïÖÆÆ·¼ì¶¨ËùµÈ¾³ÄÚÍâ¶à¼Ò´óѧ¡¢¿ÆÑлú¹¹½¨Á¢µÄ¿Æ¼¼ºÏ×÷¹ØÏµ£¬ÊµÏÖÉ豸×ÊÔ´¡¢¼¼Êõ×ÊÁϼ°È˲Å×ÊÔ´¹²Ïí¡£

Representative Publication: (²»¶àÓÚ5ƪ£¬°üÀ¨×¨Àû)
1.Research on bloodcompatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition,  Biomaterials, 1998,19(7-9):771
2.Zhou H.F., Yang P., Zhao A.S., Leng Y.X., Huang N., Improving thromboresistance of Ti-O film by phosphorus-doping: fabricating conditions, characteristics and antithrombotic behaviour, Surface & Coatings Technology, 2007, v201, P 8066-8069
3.Zhang Q., Leng Y.X., Qi F., Tao T., Huang N., Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods, Nuclear Instruments and Methods in Physics Research B, 2007, v 257, p 411¨C415
4.Li J.X., Wang J., Shen L.R., Xu Z.J., Li P., Wan G.J., Huang N., The Influence of Polyethylene terephthalate Surfaces Modified by Silver Ion Implantation on Bacterial Adhesion Behavior, Surface & Coatings Technology, 2007, v201, P8155¨CP8159


Webpage:http://www.biomatchina.com/biom/gaikuang.asp

[ Last edited by czb1981 on 2008-11-26 at 19:22 ]
40Â¥2008-11-25 00:18:35
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

mannyezhang

ľ³æ (ÕýʽдÊÖ)


¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍÆ¼ö

¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+5,VIP+0):лл·ÖÏí£¡
Group Name:
Ned Seeman's Laboratory

Group Leader:
Prof. Nadrian C. Seeman

Affiliation:
Department of Chemistry
New York University

Research Interest:
Their  interest in branched DNA was originally stimulated by a desire to characterize Holliday junctions. These are four-arm branched DNA molecules that are found to be structural intermediates in genetic recombination. The focus of the work on these unusual molecules is to characterize the biophysics of recombination intermediates, particularly their structure, dynamics and thermodynamics, and to establish the relationship between these properties and their biological function. In the last few years, the symmetry, crossover topology and sequence-dependent thermodynamics of the 4-arm junction have been characterized and analyzed. The study of recombination intermediates has been extended by constructing and analyzing molecules with double crossovers, and by exploring broader classes of multi-stranded molecules, called antijunctions and mesojunctions. Recently, we have used Bowtie junctions to examine the properties of Holliday junctions.

Research Highlight:
The laboratory is investigating unusual DNA molecules in model systems that use synthetic molecules. A major effort in our laboratory is devoted to DNA Nanotechnology.The attachment of specific sticky ends to a DNA branched junction enables the construction of stick figures, whose edges are double-stranded DNA. This approach has already been used to assemble a cube, a truncated octahedron , nanomechanical devices and 2-D crystals from DNA. Ultimate goals for this approach include the assembly of a biochip computer, nanorobotics and the rational synthesis of periodic matter. This methodology also has applications to DNA Based Computing.

Representative Publication:
[1]*X. Wang & N.C. Seeman, The Assembly and Characterization of 8-Arm and 12-Arm DNA Branched Junctions, J. Am. Chem. Soc., 129, 8169-8176 (2007).
[2] N.C. Seeman, An Overview of Structural DNA Nanotechnology, Mol. Biotech. 37, 246-257 (2007).
[3] C. Lin, X. Wang, Y. Liu, N.C. Seeman & H. Yan, Rolling Circle Enzymatic Replication of a Complex Multi-Crossover DNA   Nanostructure, J. Am. Chem. Soc., 129, 14475-14481 (2007).
[4] N.C. Seeman, Nanotechnology and the Double Helix, Scientific American Reports, 30-39, September issue (2007).
[5] W. Liu, X. Wang, T. Wang, R. Sha & N.C. Seeman, A PX DNA Triangle Oligomerized Using a Novel Three-Domain Motif, NanoLett 8, 317-322 (2008).

etc.

Webpage:
http://seemanlab4.chem.nyu.edu/
50Â¥2008-12-16 11:01:58
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

gexiang

½ð³æ (ÕýʽдÊÖ)


Larry L. Hench Group

¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+5,VIP+0):thanks 4-1 14:57
Group Name:
Larry L. Hench Group

Group Leader:
Larry L. Hench

Larry L. Hench is currently Professor of Ceramic Materials in the Department of Materials, and he is also Co-Director of the Tissue Engineering and Regenerative Medicine Centre at Imperial College. He assumed the Chair of Ceramic Materials at Imperial College in December 1995, following 32 years at the University of Florida where he was Graduate Research Professor of Materials Science and Engineering, Director of the Bioglass® Research Center and Co-Director of the Advanced Materials Research Center. He completed B.S. and PhD degrees at the Ohio State University in 1964.

In 1969 Professor Hench discovered Bioglass®, the first man-made material to bond to living tissues. This unique range of soda-calcia-phospho-silica glasses is used clinically throughout the world for repair of bones, joints and teeth. This development, together with the accompanying studies of the mechanisms of glass surface reactions and chemical processing of materials, has led to many international awards, including the MRS Von Hippel Award and publication of nearly 520 research papers, 22 books and 23 patents. Dr. Hench's studies of sol-gel processing of silica has led to the development of a new generation of gel-silica optical components (Gelsil®, including net shape-net surface micro-optics, diffractive optics and porous optical matrices for environmental sensors tissue engineering and solid state dye lasers. These products, now commercially manufactured, have led to numerous advanced technology awards in the optics industry.

Affiliation:
Imperial College (UK)

Research Interest (Specified):
Bioglass

Research Highlight:
His current research is focused on the newly emerging field of tissue engineering. Pioneering studies in collaboration with Professor Julia Polak more recently led to the discovery of a family of genes that are regulated by bioactive materials. This discovery is being used to create a new generation of Materials for regeneration and repair of tissue.

Representative Publication:
1) Hench, LL, Polak, JM, Third-generation biomedical materials., Science, 2002, Vol: 295, Pages: 1014 - 1017, ISSN: 1095-9203
2) Peitl, O, LaTorre, GP, Hench, LL, Effect of crystallization on apatite-layer formation of bioactive glass 45S5, J BIOMED MATER RES, 1996, Vol: 30, Pages: 509 - 514, ISSN: 0021-9304
3) Saravanapavan, P, Hench, LL, Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system., J Biomed Mater Res, 2001, Vol: 54, Pages: 608 - 618, ISSN: 0021-9304
4) Gough, JE, Clupper, DC, Hench, LL, Osteoblast responses to tape-cast and sintered bioactive glass ceramics., J Biomed Mater Res A, 2004, Vol: 69, Pages: 621 - 628, ISSN: 1549-3296  
5) Beilby,R.C., Pryce,R.S., Hench,L.L., et al , Enhanced derivation of osteogenic cells from murine ES cells following treatment with ionic dissolution products of 58S sol-gel glass, Tissue Engineering, 2004, ISSN: 1076-3279

Webpage:
http://www3.imperial.ac.uk/people/l.hench
111Â¥2009-03-31 22:14:52
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
ÆÕͨ»ØÌû

sf3

½ð³æ (СÓÐÃûÆø)


¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍÆ¼ö

ûÓÐÈ˼ÌÐøÁËô£¿
3Â¥2008-09-21 14:50:35
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

travelerchem

ÖÁ×ðľ³æ (ÖªÃû×÷¼Ò)


¡ï¡ï¡ï ÈýÐǼ¶,Ö§³Ö¹ÄÀø

Ö§³ÖÂ¥Ö÷
8Â¥2008-09-23 23:13:55
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

feifei19810812

½ð³æ (Ö°Òµ×÷¼Ò)


¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍÆ¼ö

good
9Â¥2008-09-24 16:02:08
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

yinanlin

Í­³æ (³õÈëÎÄ̳)


ÇóÖú

ÎÒ¸Õ¸Õ½Ó´¥²ÄÁÏÕâÒ»¿é£¬ÎÒ ÏÖÔڵķ½ÏòÊÇ×éÖ¯¹¤³Ì£¬ÒÔǰרҵÉúÎ﹤³Ì£¬Ï£Íû¸÷λ¶à¶à°ïÖú¡£
ÎÒ ÏëÇëÎʹØÓÚÄÉÃײÄÁϵÄÈ˹¤Ñª¹Ü¶¼ÒѾ­×öµ½Ê²Ã´³Ì¶È£¬×îж¯Ì¬ÊÇʲô£¿
10Â¥2008-09-26 10:39:56
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

travelerchem

ÖÁ×ðľ³æ (ÖªÃû×÷¼Ò)


»Ø¸´10Â¥µÄÌáÎÊ£º
µ½ PudMed ÉÏËÑË÷ tissue engineered blood vessel ¹Ø¼ü´Ê¾ÍÖªµÀ×îж¯Ì¬ÁË
11Â¥2008-09-26 11:58:53
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

alps1999

ľ³æ (ÕýʽдÊÖ)


¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍÆ¼ö

Ñ¡Ìâ²»´í£¬Ç¿ÁÒÖ§³Ö£¡£¡£¡Èç¹ûÄÜÉèµã½±½ð£¬·¢ÌûÈ˵Ļý¼«ÐÔ»áºÜ¸ß
12Â¥2008-09-26 12:43:17
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

wenzhanwu

½ð³æ (ÕýʽдÊÖ)


Î人´óѧÅÓ´úÎÄ×é

¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+7,VIP+0):µÚÒ»¸ö¸úÌûµÄ£¬ºÜ¸øÃæ×Ó¡«¡«Ð»Ð»£¡
Group Name:
ÄÉÃ×ÉúÎï¼¼ÊõÓëÉúÎïµç»¯Ñ§ÊµÑéÊÒ

Group Leader:
ÅÓ´úÎÄ

Affiliation:
Î人´óѧ»¯Ñ§Óë·Ö×Ó¿ÆÑ§Ñ§Ôº

Research Interest:
¶à¹¦ÄÜÁ¿×ÓµãµÄºÏ³É¼°ÔÚÉúÎïÌåϵÖеÄÓ¦ÓÃ

Research Highlight:
ÔÚÁ¿×ÓµãµÄºÏ³É¡¢ÐÞÊΡ¢ÉúÎïÄÉÃ×±ê¼ÇºÍÄÉÃ×ÉúÎïÆ÷¼þ¹¹½¨¼°ÉúÎïÓ¦Ó÷½ÃæÈ¡µÃ¶àÏî³É¹û£¬»ùÓÚÁ¿×ӵ㹹½¨ÁËÓ«¹â´ÅÐÔϸ°û°ÐÏò¶à¹¦ÄÜÄÉÃ×ÉúÎïÆ÷¼þ£¬²¢ÖƱ¸Á˾ßÓпɼû¹â´ß»¯É±¾úÄÜÁ¦µÄÁ¿×ӵ㣭ÄÉÃ×¶þÑõ»¯îѸ´ºÏĤ

Representative Publication:
1. Cell-Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism. Small,1(5)(2005)506-509
2. Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications. Chem. Commun., (34)(2005)4276-4278.
3. CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging. Chem. Commun., (44)(2005)5518-5520
4. Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates£¬Anal. Chem. 75 (15)(2003)3941-3945

Webpage:
http://www.chem.whu.edu.cn/fxkxnmsys/INDEX.HTM

[ Last edited by zhangwj on 2008-10-13 at 21:20 ]
14Â¥2008-10-07 13:55:10
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

lee2002hu

Ìú¸Ëľ³æ (ÖøÃûдÊÖ)


¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍÆ¼ö

ÔÞ~~~~~

[ Last edited by lee2002hu on 2008-10-9 at 10:48 ]
15Â¥2008-10-08 10:08:05
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

lee2002hu

Ìú¸Ëľ³æ (ÖøÃûдÊÖ)


¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+5,VIP+0):µÚ¶þλ£¬Ð»Ð»ÌṩÐÅÏ¢£¡Ç뽫¥Éϵı༭ɾ³ý¡£
Group Name:
Nanomechanics of Engineering and Biological Systems

Group Leader:
Huajian Gao

Affiliation:
Brown University

Research Interest:
Stochastic Models of Polymers in Strong Confinement, Continuum and Statistical Studies of Focal Contact in Cell Adhesion, Continuum and Statistical Modeling of Endocytosis, Atomistic Simulations in Molecular and Cellular Biomechanics

Research Highlight:
Bottom-up Designed Hierarchical Adhesion Structures of Gecko,Viruses Enter Cells at Optimal Size,Optimal Adhesion of Gecko Hairs, Flaw Tolerance at Nanoscale

Representative Publication:
1) Gao H., Ji B., Jager I.L. Arzt. E. and Fratzl. P 2003, Proceedings of the National Academy of Sciences 100 5597
2)H.P. Zhao, X.Q. Feng and H. Gao, "Ultrasonic technique for extracting nanofibers from nature materials," 2007, Applied Physics Letters
3) S. Chen and H. Gao, "Bio-inspired mechanics of reversible adhesion: Orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials," 2007, Journal of the Mechanics and Physics of Solids
4) H. Yao and H. Gao, "Mechanical principles of robust and releasable adhesion of gecko," 2007, Journal of Adhesion Science and Technology, Vol. 21 (12¨C13), pp. 1185¨C1212.
5) H. Yao and H. Gao, "Multi-scale cohesive laws in hierarchical materials," 2007, International Journal of Solids and Structures, Vol. 44, pp. 8177¨C8193

Webpage:
http://www.engin.brown.edu/Faculty/gao/gaogroup/index.html

[ Last edited by zhangwj on 2008-10-13 at 21:24 ]
16Â¥2008-10-08 10:08:53
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

lee2002hu

Ìú¸Ëľ³æ (ÖøÃûдÊÖ)


¡ï ¡ï ¡ï
zhangwj(½ð±Ò+3,VIP+0):лл£¬ÒªÊÇÑϸñÕûÀíºÃ¾Í¸üºÃÁË£¡
Group Name:
Robin Wootton and insect biomechanics at Exeter

Group Leader:
Robin Wootton

Affiliation:
University of Exeter

Research Interest:
engineering approach to insect wing design, stressing their functioning as flexible aerofoils, with smart properties

Research Highlight:
Ultrastructure and mechanics of insect wing cuticles as fibrous composites
Structural analysis of insect wings by mechanical testing and numerical modelling.
Leading edge vortices in insect flight
Diffractive effects in insect wings

Representative Publication:
1)Vukusic P, Sambles J.R., Lawrence C.R. & Wootton R.J. (2001). Structural colour. Now you see it - now you don't. Nature 410, 36.
2)Wootton R.J. (2000). Aerodynamics - From insects to microvehicles. Nature 403 (6766), 144-145
3)Wootton R.J. (1999). Aerodynamics - How flies fly. Nature 400 (6740), 112-113
4)Wootton R.J., Kukalova-Peck J., Newman D.J.S. & Muzon J. (1998).
Smart engineering in the mid-Carboniferous: How well could Palaeozoic dragonflies fly?Science 282 (5389), 749-751

Webpage:
http://biosciences.exeter.ac.uk/staff/wootton/

[ Last edited by zhangwj on 2008-10-13 at 21:24 ]
17Â¥2008-10-08 10:15:43
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

rczeng

½ð³æ (СÓÐÃûÆø)


¾ÙÀý5

¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+5,VIP+0):гæÀ´Åõ³¡£¬Ð»Ð»£¡Ç뽫webpage¸Ä³ÉʵÑéÊÒ»ò¸öÈËÖ÷Ò³µØÖ·¡£
Group name: Laboratory for Biomechanics and Biomaterials

Group leader: Dr. Frank Witte

Affiliation: Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Str. 1-7, 30625 Hannover, Germany

Research Interest: magnesium alloys as biomaterials

Research Highlight: He is a leading position in research of degradation of magnesium alloys as biomaterials in the world. His achievements lie on not only material itself but also clinical trials. The detailed information can be found in following literatures.

Representative Publication
[1] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005, 26, 3557.
[2] F. Witte, J. Fischer, J. Nellesen, H. A. Crostack, V. Kaese,A. Pisch, F. Beckamann, H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials 2006, 27, 1013.
[3] F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Stoermer,C. Blawert, W. Dietzel, N. Hort, Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 2007, 28, 2163.
[4] Frank Witte, Inken Abeln, Elinor Switzer, Volker Kaese, Andrea Meyer-Lindenberg, Henning Windhagen, Evaluation of the skin sensitizing potential of biodegradable magnesium alloys. J Biomed Mater Res A. 2007 Dec 7: 18067164
[5] Fabienne C Fierz, Felix Beckmann, Marius Huser, Stephan H Irsen, Barbara Leukers, Frank Witte, Ozer Degistirici, Adrian Andronache, Michael Thie, Bert M¨¹ller, The morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials 2008 Jul 5: 18606446

Webpage: http://lib.bioinfo.pl/auth:Witte,F
18Â¥2008-10-10 22:51:43
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

mlzh85275

гæ (СÓÐÃûÆø)


¡ï¡ï¡ï ÈýÐǼ¶,Ö§³Ö¹ÄÀø

ºÃ×ÊÔ´£¬Ö§³Ö£¡
19Â¥2008-10-14 22:28:27
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
¡ï ¡ï
zhangwj(½ð±Ò+0,VIP+0):¿É·ñ½«Ò»Ð©Äã±È½ÏÊìϤµÄ°´ÕÕһ¥µÄÒªÇóÕûÀíÒ»ÏÂÓë´ó¼Ò·ÖÏí£¬Ð»Ð»£¡
zhangwj(½ð±Ò+2,VIP+0):²¹½±µÄ½ð±Ò£¬Ï£ÍûÄܽ«Ò»Ð©ÊìϤµÄ×é°´ÕÕ¸ñʽ½éÉܸø´ó¼Ò£¬ÓÐÖØ½±£¬Ð»Ð»£¡
ÎÒ¾Í˵¹úÄڵİÉ
1.ÖпÆÔº»¯Ñ§Ëù£¬ÍõÉí¹ú
2.ËÄÒ½´ó£¬½ðÑÒ
3.Ê×¶¼Ò½¿Æ´óѧ£¬ÀîÏþ¹â
4.ÖйúʳƷÓëÒ©Æ·¼ì¶¨Ëù£¬ÞÉÍ¢ì³
5.301Ò½Ôº¸¶Ð¡±ø
6.ÖÐɽ´óѧ£¬ÁõСÁÖ
7.ÉϺ£µÄ£¬²ÜÒËÁÖ
8.Ç廪´óѧ
9.Î人´óѧ
10.ËÄ´¨´óѧ
11.ЭºÍÒ½¿Æ´óѧ
µÈ
20Â¥2008-10-16 09:22:25
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

wmb20020913

½ð³æ (СÓÐÃûÆø)


ÕæµÄͦºÃµÄ! лл¸÷λ! Ï£Íû¸ü¶à!
21Â¥2008-10-16 23:28:02
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

zhangwj

ÈÙÓþ°æÖ÷ (Ö°Òµ×÷¼Ò)


QDs I

Group Name:
Laboratories for Biomolecular Engineering & Nanotechnology

Group Leader:
Shuming Nie ÄôÊéÃ÷

Affiliation:
Emory University

Research Interest:
Research in the Nie group is primarily in biomolecular engineering and nanotechnology, with a particular focus on the development of bioconjugated nanoparticles for imaging and therapeutic applications.

Research Highlight:
They develop several classes of nanoparticles including semiconductor quantum dots, colloidal metal nanoparticles, magnetic iron oxide particles, and biodegradable or self-assembled nanocarriers. These nanoparticles are used for important medical applications such as in-vivo cancer imaging, multiplexed molecular profiling, correlation of biomolecular signatures (biomarkers) with clinical outcome, early cancer detection, and targeted drug delivery. In collaboration with physicians and surgeons, their work currently focuses on two major human diseases ¨C malignant cancer and cardiovascular disease.

Representative Publication:
1. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN,Wang MD, Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008 Jan;26(1):83-90.
2. Ruan G, Agrawal A, Marcus AI, Nie S. Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc. 2007 Nov 28;129(47):14759-66. Epub 2007 Nov 6.
3. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, Petros JA, O'Regan RM, Yezhelyev MV, Simons JW, Wang MD, Nie S. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry.  Nat Protoc. 2007;2(5):1152-65.
4. Maxwell DJ, Taylor JR, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc. 2002 Aug 14;124(32):9606-12.
5. W. C. W. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018, 1998.

Webpage:
http://www.nielab.org/index.html

[ Last edited by zhangwj on 2008-10-19 at 13:53 ]
22Â¥2008-10-19 13:52:30
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

zhangwj

ÈÙÓþ°æÖ÷ (Ö°Òµ×÷¼Ò)


QD II

Group Name:
GAO LAB

Group Leader:
Xiaohu Gao ¸ßÌ?»¢

Affiliation:
University of Washington

Research Interest:
Nano Science and Engineering; Multiplexed Biomolecule Screening & Drug Discovery; Molecular Diagnostics; In vivo Molecular Imaging; Targeted and Traceable Drug Delivery; Imaging Instrumentation.

Research Highlight:
They design and make functional materials and structures on the nanometer scale. Examples include multicolor quantum dots (Qdots) for fluorescence imaging, magnetic nanoparticles for MRI, metallic nanoparticles for ultrasensitive detection, multifunctional polymeric nanoparticles for targeted drug delivery and etc. Based on the novel optical properties of Qdots and on their abilities to incorporate them into microbeads at precisely controlled ratios, they have developed an optical barcoding technology for massive parallel and high-throughput analysis of biological molecules. This nano-barcoding approach can produce millions of distinct optical codes for simultaneous analysis of genes, proteins, cells, and small molecule drugs. It is well known that diseases such as cancer vary both genetically and phenotypically between patients who may have identical type and stage of cancer. Each person's cancer is as unique as his or her fingerprint, which explains unpredictable responses to therapies and poses new technology challenges for tumor characterization on the molecular level. They currently explore the use of multicolor and bioconjugated Qdots for in situ quantitative profiling of tumor markers. In correlation with pathology, the results are expected to have major impact on accurate tumor characterization and differentiation as well as on molecular therapeutics. Rapid advances in non-invasive imaging are changing the way they visualize molecular dynamics in living organisms. The high sensitivity of nanoparticle-labeled cells allows detection down to the single-cell level. They are currently interested in engineering multifunctional nanoparticle probes for early detection of cancer and cardiovascular diseases. They are interested in inorganic nanoparticle-organic polymer hybrid structures for targeted and traceable delivery of small-molecule drugs, siRNAs, and DNAs. The nanoparticles have dual functionalities, serving as both contrast agent and structural scaffold. Hydrophobic cancer drugs will be trapped between the core particle and polymer surface coating layer, whereas targeting ligands will be linked to the outer surface.

Representative Publication:
1. Maksym Yezhelyev, Lifeng Qi, Ruth M. O¡¯Regan, Shuming Nie, and Xiaohu Gao, "Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging," Journal of the American Chemical Society, 2008, 130, 9006-9012.
2. Lifeng Qi, and Xiaohu Gao, "Quantum DotAmphipol Nanocomplex for Intracellular Delivery and Real-Time Imaging of siRNA," ACS Nano, 2008, 2, 1403-1010.
3. Xiaohu Gao, Lily Yang, John A. Petros, Fray F. Marshall, Jonathan W. Simons, Leland Chung, and Shuming Nie, ¡°In vivo molecular and cellular imaging with quantum dots,¡± Current Opinion in Biotechnology 2005, 16, 63-72.
4. Xiaohu Gao, Yuanyuan Cui, Richard Levenson, Leland Chung, and Shuming Nie, ¡°In vivo cancer targeting and imaging with semiconductor quantum dots,¡± Nature Biotechnology 2004, 22, 969-976.
5. Xiaohu Gao, and Shuming Nie, "Molecular profiling of single cells and tissue specimens with quantum dots," Trends in Biotechnology 2003, 21, 371-373.

Webpage:
http://faculty.washington.edu/xgao/index.html
23Â¥2008-10-19 13:53:01
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

belldone

ľ³æ (ÖøÃûдÊÖ)


¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+5,VIP+0):лл¹²Ïí¡«¡«
Group Name:
Hongjie Dai's research lab

Group Leader:
Hongjie Dai (´÷ºê½Ü)

Affiliation:
Stanford University

Research Interest:
The research of Dai group interfaces with chemistry, physics, materials science and biophysics£¬interested in solid state and soft condensed materials for biomedical application.

Research Highlight:
A specific research program involves the development of new synthesis methods to obtain ordered carbon nanotube architectures on surfaces. These novel nanowire architectures are ideal model systems for addressing fundamental physics problems in low dimensions, and for future device applications. Our overall approach involves the combination of inorganic synthesis of mesoporous catalytic materials and chemical vapor deposition with microfabrication techniques. With the synthesized nanowire architectures, we are carrying out electrical and electromechanical measurements of individual nanotube molecular wires, aimed to understand the properties of quasi-one-dimensional solids, elucidating quantum mechanical effects in small systems, and explore their applications in future miniaturized devices. Another project involves using scanning probe microscopy techniques to probe the structural properties of biological macromolecules, and elucidate the interactions between individual molecular pairs. Our approach involves the development of atomic force microscopy probes that are tipped by individual nanotubes that are as small as ten angstroms in diameter. Such a molecular tip should allow structural imaging of biological systems with unprecedented resolution and sensitivity. We are also interested in electrochemical studies of biological systems using chemically functionalized nanotube electrodes.

Representative Publication:
1) Zhuang Liu, Xiaolin Li, Scott M. Tabakman, Kaili Jiang, Shoushan Fan, and Hongjie Dai. ¡°Multiplexed Multicolor Raman Imaging of Live Cells with Isotopically Modified Single Walled Carbon Nanotubes¡± J. AM. CHEM. SOC. 130, 13540¨C13541, 2008  
2) Xiaoming Sun, Zhuang Liu, Kevin Welsher, Joshua Tucker Robinson, Andrew Goodwin, Sasa Zaric, and Hongjie Dai. ¡°Nano-Graphene Oxide for Cellular Imaging and Drug Delivery¡± Nano Res 1: 203-212, 2008  
3) Adam de La Zerda, Cristina Zavaleta, Shay Keren, Srikant Vaithilingam, Sunil Bodapati, Zhuang Liu, Jelena Levi, Bryan R. Smith, Te-Jen Ma, Omer Oralkan, Zhen Cheng, Xiaoyuan Chen, Hongjie Dai, Butrus T. Khuri-Yakub and Sanjiv S. Gambhir. ¡°Carbon Nanotubes As Photoacoustic Molecular Imaging Agents In Living Mice¡± Nature Nanotechnology Vol. 3, 556-562, September 2008
4) Xiaolin Li, Guangyu Zhang, Xuedong Bai, Xiaoming Sun, Xinran Wang, Enge Wang, and Hongjie Dai. ¡°Highly conducting graphene sheets and Langmuir¨CBlodgett films¡± Nature Nanotechnology Vol. 3, 538-542, September 2008
5) Shanta Dhar, Zhuang Liu, J¨¹rgen Thomale, Hongjie Dai, and Stephen J. Lippard. ¡°Targeted Single-Wall Carbon Nanotube-Mediated Pt(IV) Prodrug Delivery Using Folate as a Homing Device¡± J. AM. CHEM. SOC. 130, 11467¨C11476, 2008

Webpage:
http://www.stanford.edu/dept/chemistry/faculty/dai/group/

[ Last edited by zhangwj on 2008-10-23 at 00:05 ]
24Â¥2008-10-21 11:01:59
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

belldone

ľ³æ (ÖøÃûдÊÖ)


¡ï ¡ï ¡ï
zhangwj(½ð±Ò+3,VIP+0):°´ÕÕһ¥µÄ¸ñʽҪÇóÕûÀíһϾ͸üºÃÁË£¬Ð»Ð»£¡
Group Name:
International institute for nanotechnology

Group Leader:
Chad Mirkin

Affiliation:
Northwestern University

Research Interest:
Dr. Chad A. Mirkin's research focuses on developing methods for controlling the architecture of molecules and materials on the 1-100 nm length scale, and utilizing such structures in the development of analytical tools that can be used in the areas of chemical and biological sensing, lithography, catalysis, and optics

Research Highlight:
Inorganic Macrocycles Synthesized Via the Weak-Link Approach;
Programmed Assembly of DNA-Functionalized Nanoparticles;
Dip-Pen Nanolithography;
Anisotropic Nanostructures.

Representative Publication:
1) Kuwabara, J.; Ovchinnikov, M. V.; Stern, C. L.; Mirkin, C. A. ¡°The Reactivity of Dinuclear Rhodium(I) Macrocycles Formed via the Weak-Link Approach,¡± Organometallics 2008, 27, 789-792.
2) Kim, K.-H.; Sanedrin, K.; Ho, A. M.; Lee, S.-W.; Moldovan, N.; Mirkin, C. A.; Espinosa, H. D. ¡°Direct Delivery and Submicrometer Patterning of DNA by a Nanofountain Probe,¡± Adv. Mater. 2008, 20, 330-334.
3) Lee, J.-S.; Ulmann, P. A.; Han, M. S.; Mirkin, C. A. ¡°A DNA-Gold Nanoparticle Based Colorimetric Competition Assay for the Detection of Cysteine,¡° Nano Lett. 2008, 8, 529-533.
4) Ciszek, J. W.; Huang, L.; Wang, Y.; Mirkin, C. A. ¡°Kinetically-Controlled, Shape-Directed Assembly of Nanorods,¡° Small 2008, 4, 206-210.
5) Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. ¡°DNA-Programmable Nanoparticle Crystallization,¡° Nature 2008, 451, 553-556.

Webpage:
http://chemgroups.northwestern.edu/mirkingroup/index.html

[ Last edited by zhangwj on 2008-10-23 at 00:06 ]
25Â¥2008-10-21 11:15:24
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

lyhaigang

ľ³æ (Ö°Òµ×÷¼Ò)


¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+5,VIP+0):лл·ÖÏí£¡
Group Name:
Polymeric Biomaterials Laboratory

Group Leader:
Professor  Subbu S. Venkatraman

Affiliation:
Nanyang Technological University

Research Interest:
His group is interested in designing and modifying polymers for biomedical applications. In this work, they are closely associated with local hospitals and researchers, including the National Heart Centre, Tan Tock Seng Hospital and the National Cancer Centre.  Current interests include the following:
1. Localized drug/gene delivery using stents
2. Biodegradable polymers
3. Injectable implants and nanoparticles
4. Hemocompatibilization of polymers   

Research Highlight:
Biodegradable Drug-eluting Stents
Cardiovascular disease remains one of the most common and pressing problems in healthcare today. In particular, heart attacks are on the rise and are a leading cause of death in developed nations. Current treatments options include balloon angioplasty with concurrent stenting. The stent used is metallic and permanent. Problems associated with current stenting include restenosis (re-blockage of the artery), infection and interference with some diagnostic procedures. To overcome these, we are working on a biodegradable polymer stent that has the capacity to deliver at least two types of drugs, to minimize restenosis and thrombosis; the stent then biodegrades into harmless products after a few months.

Related publications:
1. Subbu Venkatraman, Lay Poh Tan, Joe Ferry Joso, Yin Chiang Freddy Boey, Xintong Wang,
¡°Biodegradable Stents with Elastic memory¡±, Biomaterials, 27, 1573-1578 (2006)
2. S.Venkatraman*, L.P.Tan, T.Vinalia, K.H.Mak, F.Boey: ¡°Collapse Pressures of
Biodegradable Stents¡±, Biomaterials, 24, pp.2105-2111 (2003)
3. The Partial Elastic Memory (PEM) concept applied to biodegradable stents, (Invited
Talk): S.Venkatraman, X.Ying, W.Yee Shan, F.Boey, Pacific Polymer Conference, Hawaii,
December 2005.
4. W.A. Chan, T.B. Bini, Subbu S. Venkatraman, F.Y.C. Boey , ¡°Effect of radio-opaque filler on biodegradable stent properties¡±, Journal of Biomedical Materials Research Part A, Volume 79A, Issue 1, 47-52 (2006).
5.Drug and gene delivery from Stents (Invited Talk), S.Venkatraman, Ramgopal Yamini,
Lisa Lao: Asian Chemical Congress, Seoul, August 2005.
6. S.Venkatraman and F,Boey, ¡°Release Profiles in Drug-eluting Stents: Issues and Uncertainties¡± Invited review, J Control Release, to appear in July 2007.

Webpage
http://www3.ntu.edu.sg/home/assubbu/index.htm

[ Last edited by zhangwj on 2008-10-26 at 21:59 ]
26Â¥2008-10-26 09:53:56
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

lyhaigang

ľ³æ (Ö°Òµ×÷¼Ò)


¡ï ¡ï ¡ï
zhangwj(½ð±Ò+3,VIP+0):лл·ÖÏí£¬Çë°´ÕÕ¸ñʽÕûÀíһϣ¡
Group Name:
Advanced materials Laboratory

Group Leader:
Professor Ma Jan

Affiliation:
Nanyang Technological University

Research Interest:
Ma Jan's research interests include functional materials, nanomaterials and constitutive modeling of densification of composite materials. He also works on various processing techniques for functionally graded materials (FGM), such as electrophoretic deposition (EPD). His most recent program is on the development of nano-structured materials, which includes template directed synthesis of mesoporous materials, for biomedical applications. He also leads a team of researchers on piezoelectric materials, where both scientific and translational research works are carried out. Last but not least, he is also heading the soldier systems program in defence materials research at Temasek Laboratories@NTU, where advanced material systems are developed for soldiers.  



Research Highlight:
To improve survivability and sustainability of soldiers and military vehicles, our group is developing an advanced soldier system based on functional materials. The functionalities of the materials will be enhanced via manipulation of their nanostructures and the materials will be processed into suitable configurations for soldier system integration. The concepts involve the formation of an armour that will protect the soldiers against multiple ballistic impact and attacks from electromagnetic wave, the use of thermoelectric materials to remove heat (and hence suppresses temperature signals) and generate electricity, and the application of electrochromic materials to shield the soldiers and vehicles from being detected.

Our research interests concentrate on assembly synthesis and functional property study of novel inorganic nano-architectures mediated by a variety of soft and hard templates such as, amphiphilic surfactants, supramolecular polypeptides and anodized alumina oxide membrane.
The materials under present investigation include, but not restricted to Hydroxyapatite, Titania, Tin (IV) oxide, Zinc oxide, and Tin oxide-Silica composite. Many unique and attractive porous and/or hollow structures of these materials with tailor-made ordering, hierarchy, and morphology have been successfully fabricated based on sol-gel, liquid phase deposition, coprecipitation and hydrothermal techniques. Their applications cover a series of fields ranging from pharmaceuticals to catalysis, gas sensing, optoelectronics, electrochemistry, and power generating. It can be envisaged that these new materials can bring great impacts to the development of (bio)nanomaterials from both scientific and practical points of views.


Related publications:

Selected Publications
J. L. Mi, T. J. Zhu, X. B. Zhao, J. Ma, Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3, Journal of Applied Physics 101, 054, 314, 2007.
B. Ma, Gregory K L Goh and J. Ma, Crystallinity and photocatalytic activity of liquid phase deposition TiO2 films, J. Electroceramics, 154, 557-561, 2007.
Shanxin Xiong, Yang Xiao, Jan Ma, Liying Zhang and Xuehong Lu, ¡°Enhancement of Electrochromic Contrast by Tethering Conjugated Polymer Chains onto Polyhedral Oligomeric Silsesquioxane Nanocage¡±, Macromol. Rapid Commun., 28, 281¨C285, 2007.
Nathaniel Ng, J. Ma, and F. Boey, Polymer Piezoelectric Tubular Transducers, Electrochemical and Solid State Letters, 10 (2), 5-7, 2007.
Du ZH, Ma J, Zhang TS, Densification of the PLZT films derived from polymer-modified solution by tailoring annealing conditions, Journal of the American Ceramic Society, 90 (3): 815-820, 2007.
Z. Du, TS Zhang and J. Ma, Effect of polyvinylpyrrolidone on the formation of perovskite phase and rosette-like structure in sol-gel derived PLZT films, Journal of Materials Research, 22, 8, 2195-2203, 2007.
J. Ma, C. Wang and C. H. Liang, Colloidal and electrophoretic behavior of polymer particulates in suspension, Materials Science and Engineering C, 27, 4, 886-889, 2007.
Tao Li, Y.H. Chen, F.Y.C. Boey and J. Ma, Domain reorientation of piezoelectric bending actuators, Sensors and Actuators A, 134, 2, 544-554, 2007.
J. Zhu, T. Zhang, B.Y. Tay and J. Ma, Fabrication of porous/hollow tin (IV) oxide skeletons from polypeptide mediated self-assembly, J. Mat. Res., 22, 9, 2448-2453, 2007.
Y. Zhao, J. Loo, F.C.Y. Boey and J. Ma, In Situ SAXRD Study of Sol-gel Induced Well-ordered Mesoporous Bioglasses for Drug Delivery, Journal of Biomedical Materials Research: Part A, in press.
Y. Chen, T. Li, J. Ma, Frequency dependence on piezoelectric vibration velocity, Sensors and Actuators A, 138 (2): 404-410 AUG 26 2007.
A. C. Nguyen, P.S. Lee, N. Ng, H. Su, S. Mhaisalkar, J. Ma, F.C.Y. Boey, Anomalous polarization switching in organic ferroelectric field effect transistors, Applied Physics Letters, LETTERS 91 (4): Art. No. 042909 JUL 23 2007.


Webpage
http://www.mse.ntu.edu.sg/homepages/ma/Majan-group.html
27Â¥2008-10-26 09:58:35
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

dchangkun007

½ð³æ (ÕýʽдÊÖ)


¡ï¡ï¡ï ÈýÐǼ¶,Ö§³Ö¹ÄÀø

¡ï
zhangwj(½ð±Ò+1,VIP+0):ÄãÄܰ´ÕÕ¶¥Â¥µÄÒªÇóÕûÀíһϽéÉܸø´ó¼ÒÂð£¿Èç¹ûÄÜ£¬½«»áÓÐ×·¼ÓµÄ½±Àø£¬Ð»Ð»£¡
Ç廪´óѧÉúÎïϵµÄ³Â¹úÇ¿ºÍÎâÇí×öµÃÒ²ºÜºÃ£¬ÔÚµÚÈý´úÉúÎïËÜÁÏPHBHHx·½ÃæµÄÑо¿ºÜ³öÉ«£¡
28Â¥2008-10-31 13:54:37
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

045846

½ð³æ (СÓÐÃûÆø)


¡ï Ò»ÐǼ¶,Ò»°ã

¡ï
zhangwj(½ð±Ò+1,VIP+0):ÄãÄܰ´ÕÕ¶¥Â¥µÄÒªÇóÕûÀíһϽéÉܸø´ó¼ÒÂð£¿Èç¹ûÄÜ£¬½«»áÓÐ×·¼ÓµÄ½±Àø£¬Ð»Ð»£¡
ÖпÆÔº»¯Ñ§Ëù±±¾©
½­À× ½ÌÊÚ
ºÉҶЧӦ
¹ú¼Ò´ó¾çÔºµÄÍ¿ÁϾÍÊǴγɹûÓ¦µ±ËãÒ»¸ö°É¡£
29Â¥2008-11-01 21:11:17
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

iamlvpeng

ľ³æ (СÓÐÃûÆø)


ÉêÓÐÇà

¡ï ¡ï ¡ï
zhangwj(½ð±Ò+3,VIP+0):лл·ÖÏí£¬ÈôÐ޸ijÉÍêÈ«°´ÕÕ¶¥Â¥ÒªÇ󣬽«»áÓÐ×·¼Ó½±Àø£¡
Group Name:
Õã½­´óѧ²ÄÁÏÓ뻯ѧ¹¤³ÌѧԺ»¯Ñ§¹¤³ÌÓëÉúÎ﹤³Ìϵ
ÉúÎïÄÉÃ×¹¤³ÌÖÐÐÄ

Group Leader:
ÖÐÐÄÖ÷ÈΣºÉêÓÐÇà

Affiliation:
Õã½­´óѧ²ÄÁÏÓ뻯ѧ¹¤³ÌѧԺ»¯Ñ§¹¤³ÌÓëÉúÎ﹤³Ìϵ

Research Interest:
Polymer Reaction Engineering; Biomaterials; Drug Delivery; Gene Delivery; Cancer Chemotherapy; Nanotechnologies.

Research Highlight:
Our research is focused on rational design and synthesis of novel polymers that may have applications in biomaterials, biotechnology and pharmaceuticals as well as other applications. Currently, two research directions are ongoing.

1.    Biodelivery: Polymer Nanocarriers for Targeted Drug Delivery and Gene Delivery to Cancer.

Our research in this area is focused on using active nanocarriers to deliver drugs to the specific subcellular targets to overcome cancer drug resistance for high therapeutic efficacy. Generally, we start from design and synthesis of new stimulus-responsive multifunctional polymers and fabrication of programmed or active nanocarriers. These nanocarriers are then tested in vitro and in vivo.

2.    Advanced Polymeric Materials and Catalysts for Atom Transfer Radical Polymerization

Our research in this area is rational design of polymers that can deliver loosely packed or even free DNA (Scheme 1 and Figure 4) into the nucleus for high transfection efficiency. Our ultimate goal is to develop polymer gene therapy for cancer or other diseases.

Representative Publication:

•           P. Xu, E. A. Van Kirk, Y. Zhan, W. J. Murdoch, M. Radosz, Y. Shen,* ¡°Targeted charge-reversal nanoparticles for nuclear drug delivery¡±, Angewandte Chemie International Edition, 2007, 46, 4999-5002.

•           P. Xu, S.-Y. Li, Q. Li, E. A. Van Kirk, J. Ren,* Z. Zhang, W. J. Murdoch, Y. Shen,* Virion-mimicking nanocapsules from pH-controlled-hierarchical self-assembly for gene delivery, Angewandte Chemie International Edition, 2008

•            H. Tang, N. Arulsamy, M. Radosz, Y. Shen*, N. V. Tsarevsky, W. A. Braunecker, W. Tang, K. Matyjaszewski*, ¡°Highly active catalyst for atom transfer radical polymerization¡±, Journal of American Chemical Society 2006, 128, 16277-16285. Highlighted in Chemical & Engineering News, 84(44), October 30, 2006, 40-41.

•            Y. Shen,* H. Tang, and M. Radosz, ¡°pH-responsive nanoparticles for drug delivery¡± Invited chapter in Drug Delivery Systems- Methods in Molecular Medicine, Kewal Jain (ed), Humana Press, to be published in 2007.

[ Last edited by iamlvpeng on 2008-11-2 at 18:44 ]
30Â¥2008-11-02 02:34:50
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

aben1

½ð³æ (СÓÐÃûÆø)


¡ï
zhangwj(½ð±Ò+1,VIP+0):ÄãÄܰ´ÕÕ¶¥Â¥µÄÒªÇóÕûÀíһϽéÉܸø´ó¼ÒÂð£¿Èç¹ûÄÜ£¬½«»áÓÐ×·¼ÓµÄ½±Àø£¬Ð»Ð»£¡
ÒýÓûØÌû:
Originally posted by dchangkun007 at 2008-10-31 13:54:
Ç廪´óѧÉúÎïϵµÄ³Â¹úÇ¿ºÍÎâÇí×öµÃÒ²ºÜºÃ£¬ÔÚµÚÈý´úÉúÎïËÜÁÏPHBHHx·½ÃæµÄÑо¿ºÜ³öÉ«£¡

ÉÇÍ·´óѧ¶àѧ¿ÆÑо¿ÖÐÐÄÒ²²»´í£¬ÕûºÏÁ˶à¸öѧ¿ÆµÄ×ÊÔ´£¬PHBHHX P3HB4HBHHX µÄÓ¦ÓÃ×öµÄ±È½Ï¹ã
31Â¥2008-11-09 16:52:09
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

NANCY99


ºÃÌû×Ó

¡ï
zhangwj(½ð±Ò+1,VIP+0):г涥Ìù£¬¹ÄÀøÒ»Ï£¬Ï£ÍûÄãÄÜÀ´²ÎÓë°¡£¬»¶Ó­³£À´ÉúÎï²ÄÁϰ棡
ÔõôûÓÐÈ˼ÌÐøle
32Â¥2008-11-11 17:04:35
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+5,VIP+0):ллÌṩÐÅÏ¢£¡
Group Name:
Î÷±±ÓÐÉ«½ðÊôÑо¿ÔºÉúÎï²ÄÁÏÑо¿Ëù

Group Leader:
Ëù³¤£ºÓÚÕñÌÎ

Affiliation:
ÒÀÍÐÓÚÎ÷±±ÓÐÉ«½ðÊôÑо¿Ôº
ÏÂÊôÒ»¸ö¹«Ë¾:Î÷°²¾ÅÖÝÉúÎï²ÄÁϹ«Ë¾

Research Interest:
ÉúÎï²ÄÁÏÑо¿ËùÒÀÍÐÎ÷±±ÓÐÉ«½ðÊôÑо¿ÔººÍÏ¡ÓнðÊô²ÄÁϼӹ¤¹ú¼Ò¹¤³ÌÑо¿ÖÐÐÄÐÛºñµÄ¿Æ¼¼ÊµÁ¦£¬»ý¼«ÖÂÁ¦ÓÚÒ½ÓÃîѺϽð¡¢îѺϽð±íÃæÉúÎï¸ÄÐÔ¡¢ÉúÎïÌմɵÈÉúÎï²ÄÁÏÒÔ¼°Ò½ÓÃÖ²ÈëÌå¡¢×éÖ¯¹¤³Ì¡¢¿ØÊÍϵͳ¼°ÏȽøÖÆÔ칤ÒÕ¼¼ÊõµÄÑо¿¡¢¿ª·¢ºÍÓ¦Óã¬Å¬Á¦´òÔìÖйúÒ½ÓÃîѺϽðÑо¿Éú²ú»ùµØ¡£
¡¡¡¡ÉúÎï²ÄÁÏÑо¿ËùÕýʽ³ÉÁ¢ÓÚ1998Ä꣬ÓÉԺʿºÍ½ÌÊÚ¡¢¸ß¹¤¡¢²©Ê¿¡¢Ë¶Ê¿Ñо¿ÉúµÈ10ÓàÃû¿ÆÑÐÈËÔ±×é³É£¬×¨Òµ´ÓÊÂÉúÎïҽѧ²ÄÁϵÄÑз¢£¬Ã¿ÄêÔÚÑо¿ËùѧϰºÍ¹¤×÷µÄ²©Ê¿ºó¡¢²©Ê¿ºÍ˶ʿÑо¿Éú3-8Ãû¡£Ñо¿ËùÓµÓÐרÃŵÄÉúÎï²ÄÁÏʵÑéÊÒ£¬10Íò¼¶µÄÎÞ¾úʵÑéÊÒºÍ20¶ą̀Ì×¼Ó¹¤¡¢·ÖÎö¼ì²âÉ豸£¬¿É´ÓÊÂÉúÎï²ÄÁϵÄÖÆ±¸¡¢¼Ó¹¤¡¢×éÖ¯·ÖÎö¡¢Á¦ÐÔ¼ì²âµÈ¸÷ÏîÑо¿ºÍ²úÆ·¿ª·¢¡£ÒÑͬ10¶à¸ö¹ú¼ÒºÍµØÇøµÄ100¶à¼Ò´óѧ¡¢Ñо¿ËùÒÔ¼°¹«Ë¾½¨Á¢ÁËÊÀ½ç·¶Î§ÄÚµÄѧÊõ½»Á÷ºÍºÏ×÷¡£ÏȺó³Ðµ£¹ú¼Ò¡°863¡±ÖصãÏîÄ¿¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðµÈ¸÷Àà¿ÆÑÐÏîÄ¿ÈýÊ®ÓàÏ¿ÆÑгɹû·á˶¡£

Webpage:
http://www.c-nin.com/KeYanJiGou/ShengWuSuo_jj.asp

Tel:028-86231084
33Â¥2008-11-12 22:18:22
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

publishpapers

ľ³æ (ÕýʽдÊÖ)


¡ï
zhangwj(½ð±Ò+1):лл£¡
Dr. Lemaitre Jacques
Professor
Ecole Polytechnique Federale de Lausanne, Powder Technology Laboratory, Materials Institute, Swiss Federal Institute of Technology Lausanne, CH-1015 Lausanne, Switzerland
35Â¥2008-11-23 00:59:54
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

publishpapers

ľ³æ (ÕýʽдÊÖ)


¡ï
zhangwj(½ð±Ò+1):лл£¡
Kokubo Tadashi
Research Institute for Science and Technology
Chubu University
1200 Matsumoto-cho, Kasugai 487-8501
Japan
Tel: 81-568-51-6583
kokubo@isc.chubu.ac.jp
36Â¥2008-11-23 01:00:22
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

publishpapers

ľ³æ (ÕýʽдÊÖ)


¡ï
zhangwj(½ð±Ò+1,VIP+0):лл£¡
Dr. Enrique Fernandez
Interdepartamental Research Group for the Applied Scientific Collaboration
IRGASC - Division of Biomaterials and Bioengineering
Department of Materials Science
Technical University of Catalonia
Avda. Diagonal 647, 08028-Barcelona ,Spain
Enrique.Fernandez@upc.edu
37Â¥2008-11-23 01:00:52
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

publishpapers

ľ³æ (ÕýʽдÊÖ)


¡ï
zhangwj(½ð±Ò+1,VIP+0):лл£¡
Josep A. Planell
Director
CENTRE DE REFERÈNCIA EN
BIOENGINYERIA DE CATALUNYA
Tel: 93 401 16 12
Fax:93 401 16 76
josep.a.planell@upc.es
www.crebec.com
38Â¥2008-11-23 01:01:23
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

publishpapers

ľ³æ (ÕýʽдÊÖ)


¡ï
zhangwj(½ð±Ò+1,VIP+0):Èç¹ûʱ¼äÔÊÐíÇë°´ÕÕ¶¥Â¥¸ñʽÕûÀí£¬»áÓÐ×·¼Ó½±Àø£¡
Pr Laurent SEDEL
Professor des Universit¨¦s
Chirurgien des Hôpitaux de Paris
Ligne directe: 01 49 95 91 38
T¨¦l¨¦copite: 01 49 95 91 32
Laurent.sedel@lrb.aphp.fr
39Â¥2008-11-23 01:02:19
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

whn732

½û³æ (ÕýʽдÊÖ)


¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+8,VIP+0):ºÃ½éÉÜ£¡Ð»Ð»·ÖÏí£¡
Group Name: John Jansen

Group Leader: John Jansen

Affiliation:  
Department of Periodontology and Biomaterials
Radboud University Nijmegen Medical Center
309 Tandheelkunde
PO Box 9101
6500 HB Nijmegen
The Netherlands

Research Interest:
Biomedical coatings
Micro- and nanotexturing of biomaterial surfaces
Oral implantology
Injectable bone fillers
Cell culture and stem cell research
Clinical research

Research Highlight:
The Department of Periodontology and Biomaterials is a leading multidisciplinary research group involved in the development of new biomaterials and studies to how these materials interact with the natural body environment. The research is focused along three research themes:

¡¤        The development and characterization of novel implant surfaces
¡¤        The construction of synthetic bone substitutes
¡¤         The application of cells and growth factors to engineer the tissue response

The challenge of every biomaterials scientist is to understand the basic phenomena of wound healing and how to use this knowledge for the development of new materials/approaches that can be used for the replacement of lost or damaged tissues.
Recently, this area of research has been termed Regenerative Medicine. The aim of Regenerative Medicine is to seduce the body into self-healing, which can only be achieved by a good fundamental understanding of structure-function relationships in normal and pathological tissues. This implies that the regenerative approach builds on the convergence of the knowledge of engineering sciences,, life sciences and clinical sciences and requires  a multi-disciplinary approach. As a consequence, Regenerative Medicine involves novel combinations of cells, biomaterials, drugs, or genes that may be designed, manufactured and delivered either synchronized or chronological as a customized therapy. Regenerative Medicine holds the promise of revolutionary advances for health care. The Department of Periodontology and Biomaterials of the Radboud University Nijmegen Medical Center intends to be a major player with respect to bone replacing therapies.

Representative Publication:
van den Beucken JJ, Walboomers XF, Boerman OC, Vos MR, Sommerdijk NA, Hayakawa T, Fukushima T, Okahata Y, Nolte RJ, Jansen JA. Functionalization of multilayered DNA-coatings with bone morphogenetic protein 2. J Control Release. 2006;113(1):63-72.
Leeuwenburgh SCG, Wolke JGC, Siebers MC, Schoonman J, Jansen JA. In vitro and in vivo reactivity of porous, electrosprayed calcium phosphate coatings. Biomaterials 2006;27(18):3368-78.
Zhang W, Walboomers XF, Wolke JG, Bian Z, Fan MW, Jansen JA. Differentiation ability of rat postnatal dental pulp cells in vitro. Tissue Eng 2005;11(3-4):357-68.
Walboomers XF, Elder SE, Bumgardner JD, Jansen JA. Hydrodynamic compression of young and adult rat osteoblast-like cells on titanium fiber mesh J Biomed Mater Res A 2006;76(1):16-24.  
van den Dolder J, Jansen JA. Enrichment of osteogenic cell populations from rat bone marrow stroma. Biomaterials 2007;28(2):249-55.

Webpage:http://www.biomaterials-umcn.nl/
43Â¥2008-11-28 19:21:18
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

whn732

½û³æ (ÕýʽдÊÖ)


¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+5,VIP+0):лл£¡
Group Name: ÀîÓñ±¦

Group Leader:ÀîÓñ±¦

Affiliation: ËÄ´¨´óѧ·ÖÎö²âÊÔÖÐÐÄ

Research Interest:
ÄÉÃ×·ÂÉú×éÖ¯ÐÞ¸´²ÄÁÏÑо¿£»
ÄÉÃ×Á×»Òʯ¾§Ìå/¸ß·Ö×Ó¸´ºÏÉúÎï²ÄÁÏÑо¿£»
¿É½µ½âÉúÎï²ÄÁÏÑо¿£»
¿É×¢ÉäÉúÎï²ÄÁÏÑо¿£»
ÄÉÃ׿¹¾ú²ÄÁÏÑо¿¡£

Research Highlight:
      ÀîÓñ±¦£¬ËÄ´¨´óѧ·ÖÎö²âÊÔÖÐÐĽÌÊÚ£¬ËÄ´¨´óѧÉúÎïҽѧ¹¤³Ìѧ¿ÆºÍÉúÎïÎÞ»ú»¯Ñ§Ñ§¿Æ²©Ê¿µ¼Ê¦£¬ËÄ´¨´óѧѧÊõίԱ»áίԱ¡£1994Äê»ñºÉÀ¼À³¶Ù£¨Leiden£©´óѧ²©Ê¿Ñ§Î»¡£Ä¿Ç°µ£ÈÎËÄ´¨´óѧÄÉÃ×ÉúÎï²ÄÁÏÑо¿ÖÐÐĺͿƼ¼²¿¹ú¼ÒÄÉÃ×ÉúÎïÒ½ÓòÄÁϲúÒµ»¯·õ»¯»ùµØÖ÷ÈΣ¬ËÄ´¨´óѧ·ÖÎö²âÊÔÖÐÐĵ³×ÜÖ§Êé¼Ç¡£¹ú¼Ò973ÏîÄ¿Ê×ϯ¿ÆÑ§¼Ò¡£
      Æù½ñÒÑ·¢±íÂÛÎÄ230ÓàÆª£¬³ö°æ×¨Öø6²¿£¬ÉêÇë·¢Ã÷רÀû35ÏÊÚȨ14Ï¡¢ÊÚȨʵÓÃÐÂÐÍרÀû11ÏÒÑÖ÷³Ö¹ú¼Ò¼¶ºÍ²¿Ê¡¼¶¿ÆÑÐÏîÄ¿30ÓàÏǰÆÚ¿ÆÑгɹûÒÑת»¯ÎªÉú²úÁ¦£¬½¨Á¢ÁËÏà¹Ø²úÒµ¡£»ñ¹ú¼ÒºÍ²¿Ê¡¼¶¿Æ¼¼½ø²½½±6Ï²¿Ê¡¼¶¸öÈËÈÙÓþ½±Àø5Ïî¡£½¨Á¢ÁËÒ»Ö§¾ßÓд´Ð¾«ÉñµÄѧÊõÑо¿ÍŶӡ£

Representative Publication:
1.Huanan Wang, Yubao Li, Yi Zuo, Jihua Li, Sansi Ma, Lin ChengBiocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering
Biomaterials, Volume 28, Issue 22, August 2007, Pages 3338-3348
2.Yi Zuo, Yubao Li, Jidong Li, Xiang Zhang, Hongbing Liao, Yuanyuan Wang, Weihu YangNovel bio-composite of hydroxyapatite reinforced polyamide and polyethylene: Composition and properties
Materials Science and Engineering: A, Volumes 452-453, 15 April 2007, Pages 512-517
3.Xuejiang Wang, Yubao Li, Jie Wei, Klass de Groot.Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites Biomaterials, Volume 23, Issue 24, December 2002, Pages 4787-4791
4.Gang Zhou, Yubao Li, Wei Xiao, Li Zhang, Yi Zuo, Jing Xue, John A. Jansen
In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite Journal of Biomedical Materials Research Part A Volume 85A, Issue 2, Date: May 2008, Pages: 418-426
5.Gang Zhou, Yubao Li, Li Zhang, Yi Zuo, John A. Jansen Preparation and characterization of nano-hydroxyapatite/chitosan/konjac glucomannan composite Journal of Biomedical Materials Research Part A Volume 83A, Issue 4, Date: 15 December 2007, Pages: 931-939

[ Last edited by whn732 on 2008-11-28 at 21:26 ]
44Â¥2008-11-28 21:06:05
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

czb1981

ľ³æ (ÖøÃûдÊÖ)


zhangwj(½ð±Ò+0,VIP+0):ÒÔºó¿ÉÒÔÖ±½ÓpmÎÒÕâÑù¸ü¿ì£¬Ð»Ð»Ä㣡
ÎÒÊÇ40Â¥
£¨Î÷ÄϽ»Í¨´óѧ »Æéª¿ÎÌâ×飩
ÒѾ­°´ÒªÇó½øÐÐÁ˱༭
45Â¥2008-11-28 22:48:34
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

mammoth

½ð³æ (³õÈëÎÄ̳)


¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍÆ¼ö

¡ï ¡ï ¡ï ¡ï ¡ï
zhangwj(½ð±Ò+5,VIP+0):лл·ÖÏí£¡
Group Name:
Langer Lab

Group Leader:
Robert Langer

Affiliation:
MIT

Research Interest:
Work is in progress in the following areas:

Investigating the mechanism of release from polymeric delivery systems with concomitant microstructural analysis and mathematical modeling


Studying applications of these systems including the development of effective long-term delivery systems for insulin, anti-cancer drugs, growth factors, gene therapy agents and vaccines
Developing controlled release systems that can be magnetically, ultrasonically, or enzymatically triggered to increase release rates
Synthesizing new biodegradable polymeric delivery systems which will ultimately be absorbed by the body
Creating new approaches for delivering drugs such as proteins and genes across complex barriers in the body such as the blood-brain barrier, the intestine, the lung and the skin
Researching new ways to create tissue and organs including creating new polymer systems for tissue engineering
Stem cell research including controlling growth and differentiation
Creating new biomaterials with shape memory or surface switching properties
Angiogenesis inhibition

Research Highlight:
Investigating the mechanism of release from polymeric delivery systems with concomitant microstructural analysis and mathematical modeling.  
• Studying applications of these systems including the development of effective long-term delivery systems for insulin, anti-cancer drugs, growth factors, gene therapy agents and vaccines.  
• Developing controlled release systems that can be magnetically, ultrasonically, or enzymatically triggered to increase release rates.


Representative Publication:
Title: TISSUE ENGINEERING
Author(s): LANGER, R; VACANTI, JP
Source: SCIENCE   Volume: 260   Issue: 5110   Pages: 920-926   Published: MAY 14 1993
Times Cited: 2,128
2.Title: BIODEGRADABLE LONG-CIRCULATING POLYMERIC NANOSPHERES
Author(s): GREF, R; MINAMITAKE, Y; PERACCHIA, MT, et al.
Source: SCIENCE   Volume: 263   Issue: 5153   Pages: 1600-1603   Published: MAR 18 1994
Times Cited: 809
Title: NEW METHODS OF DRUG DELIVERY
Author(s): LANGER, R
Source: SCIENCE   Volume: 249   Issue: 4976   Pages: 1527-1533   Published: SEP 28 1990
Times Cited: 668
Title: ANTISENSE C-MYB OLIGONUCLEOTIDES INHIBIT INTIMAL ARTERIAL SMOOTH-MUSCLE CELL ACCUMULATION INVIVO
Author(s): SIMONS, M; EDELMAN, ER; DEKEYSER, JL, et al.
Source: NATURE   Volume: 359   Issue: 6390   Pages: 67-70   Published: SEP 3 1992
Times Cited: 637

Webpage:
http://web.mit.edu/langerlab/publications/index.html
46Â¥2008-11-30 14:37:26
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

water322229

Í­³æ (СÓÐÃûÆø)


¡ï ¡ï ¡ï
zhangwj(½ð±Ò+3,VIP+0):ллÌṩÐÅÏ¢£¬ÎÒÃǽ«ÉèÖØ½ðÐüÉÍ£¡
(¾ßÌåµÄÏ£ÍûÓÐÈËÄÜÕûÀíÏ£©

ÍõÉí¹ú        Öйú¿ÆÑ§Ôº»¯Ñ§Ñо¿Ëù
¾°åÚ±ó        Öйú¿ÆÑ§Ôº³¤´ºÓ¦Óû¯Ñ§Ñо¿Ëù
²Ü°¢Ãñ        Öйú¿ÆÑ§ÔºÉϺ£Óлú»¯Ñ§Ñо¿Ëù
¹ËÖÒΰ        ËÄ´¨´óѧ
˧ÐÄÌΠ       ÖÐɽ´óѧ
³Â¹úÇ¿        Ç廪´óѧ
¸ß³¤ÓР       Õã½­´óѧ
½¯ÎýȺ        ÄϾ©´óѧ
ÕÅÏÈÕý        Î人´óѧ
Àî×Ó³¼        ±±¾©´óѧ
¶Å¸£Ê¤        ±±¾©´óѧ               
Âí½¨±ê        Ìì½òÀí¹¤´óѧ
ÖÓÕñÁÖ        Î人´óѧ
ÖÓÖ¾Ô¶        ËÕÖÝ´óѧ       
»ÆÊÀÎÄ        Î人´óѧ       
Íõ¾ù        Öйú¿ÆÑ§¼¼Êõ´óѧ
¸ÊÖ¾»ª     Öйú¿ÆÑ§Ôº»¯Ñ§Ñо¿Ëù
Ê·ÁÖÆô     ÄÏ¿ª´óѧ
47Â¥2008-12-05 16:40:09
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

С~¿É

ľ³æ (СÓÐÃûÆø)


¡ï
zhangwj(½ð±Ò+1,VIP+0):ллÌṩÐÅÏ¢£¡
ºÉÀ¼TwenteµÄJan Feijen£¬MITµÄLanger,   ¶«¾©´óѧµÄKATAOKA£¬KAISTµÄTae Gwan Park, µÈµÈ°¡£¬Ò»ÏÂ×ÓÒ²²»ÏëÕÒÄÇô¶à½éÉÜÁË£¬ºÃ¶àµÄ£¬¶¼±È½ÏÅ£µÄÈË
48Â¥2008-12-11 14:36:13
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

С~¿É

ľ³æ (СÓÐÃûÆø)


¡ï ¡ï ¡ï
zhangwj(½ð±Ò+3,VIP+0):Çë²Î¿¼¶¥Â¥¸ñʽ½éÉܸø´ó¼Ò£¬ÎÒÃÇ»áÓÐ×·¼Ó½±Àø£¬Ð»Ð»Äú¶ÔÉúÎï²ÄÁϰæµÄÖ§³Ö£¡
ÏÈ·¢Ò»¸öJan FeijenµÄ

JanFeijen½ÌÊÚÓÚ1970Äê»ñµÃºÉÀ¼Groningen´óѧ²©Ê¿Ñ§Î»£¬ÔÚ¹ú¼Ê¸ß·Ö×Ó¡¢ÉúÎï²ÄÁÏ¡¢ºÍÉúÎïҽѧ¹¤³Ì½çÏíÓкܸߵÄÉùÓþ¡£Jan Feijen½ÌÊÚÅàÑøÁË70¶àÃû²©Ê¿£¬·¢±íÂÛÎÄ400¶àƪ£¬ÂÛÎı»ÒýÓÃ8000¶à´Î£¬ÊÇJournal of Controlled Release £¨Ó°ÏìÒò×Ó 4.756)µÄ´´Ê¼È˺ʹ´Ê¼Ö÷±à£¬International Journal of Artificial Organs, Section BiomaterialsµÄÅ·ÖÞÖ÷±à£¬ºÍBiomaterials, Biomacromolecules, Journal of Biomedical Materials Research, Macromolecular Bioscience£¬Materials in MedicineµÈ½üÊ®ÆÚ¿¯µÄ±àί£¬ÊÇ10¶à´Î¹ú¼Ê»áÒéµÄÖ÷ϯ£¬ÔÚÅ·ÖÞºÍÃÀ¹úÐí¶àѧÊõÍÅÌåÖмæ¹ýÒªÖ°£¬µÃµ½Á˰üÀ¨ÃÀ¹ú¡¢Å·ÖÞ¡¢ºÍÈÕ±¾ÉúÎï²ÄÁÏЭ»á£¬ºÍÃÀ¹ú¿ØÖÆÊÍ·ÅЭ»áÊÚÓèµÄ½±Àø£¬ºÍºÉÀ¼»ÊÊÒÊÚÓèµÄѫա£
49Â¥2008-12-11 14:37:35
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
¼òµ¥»Ø¸´
2008-09-22 00:37   »Ø¸´  
 
gch02@13Â¥
2008-09-27 10:21   »Ø¸´  
Ö§³Ö ºÃ £¡
s58541Â¥
2008-11-25 09:57   »Ø¸´  
Ïà¹Ø°æ¿éÌø×ª ÎÒÒª¶©ÔÄÂ¥Ö÷ zhangwj µÄÖ÷Ìâ¸üÐÂ
¡î ÎÞÐǼ¶ ¡ï Ò»ÐǼ¶ ¡ï¡ï¡ï ÈýÐǼ¶ ¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶
ÐÅÏ¢Ìáʾ
ÇëÌî´¦ÀíÒâ¼û