| ²é¿´: 3951 | »Ø¸´: 13 | ||||
| µ±Ç°Ö»ÏÔʾÂú×ãÖ¸¶¨Ìõ¼þµÄ»ØÌû£¬µã»÷ÕâÀï²é¿´±¾»°ÌâµÄËùÓлØÌû | ||||
vsrootÒø³æ (СÓÐÃûÆø)
|
[ÇóÖú]
Ϊʲôһʱ˵ÀèÂü¼¸ºÎÊÇ·ÇÅ·¼¸ºÎ£¬Ò»Ê±ÓÖ˵ÀèÂü¼¸ºÎÊÇ΢·Ö¼¸ºÎ ÒÑÓÐ5È˲ÎÓë
|
|||
|
ÓÐʱºò¿´µ½ÀèÂü¼¸ºÎÊÇ·ÇÅ·¼¸ºÎµÄÒ»ÖÖ£¬£¬Ò»Ê±ÓÖ˵ÀèÂü¼¸ºÎÊÇ΢·Ö¼¸ºÎµÄ·ÖÖ§£¬Çó½â´ð ·¢×ÔСľ³æAndroid¿Í»§¶Ë |
» ²ÂÄãϲ»¶
ÂÛÎÄÖÕÓÚ¼ÓÃÀ²£¡Âú×ã±ÏÒµÌõ¼þÁË
ÒѾÓÐ4È˻ظ´
2025ÄêåÚÏë
ÒѾÓÐ4È˻ظ´
Ͷ¸åElsevierµÄÔÓÖ¾£¨·µÐÞ£©£¬×ÜÊÇÔÚÑ¡ÔñOAºÍsubscription½çÃæ±»Ì߯¤Çò
ÒѾÓÐ8È˻ظ´
×ÔÈ»¿ÆÑ§»ù½ðίÐû²¼Æô¶¯ÉêÇëÊé¡°ÊÝÉíÌáÖÊ¡±Ðж¯
ÒѾÓÐ4È˻ظ´
Çó¸ö²©µ¼¿´¿´
ÒѾÓÐ18È˻ظ´
» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍÆ¼ö£¬¶ÔÄúͬÑùÓаïÖú:
zaq123321
ר¼Ò¹ËÎÊ (ÖøÃûдÊÖ)
-

ר¼Ò¾Ñé: +342 - ÊýѧEPI: 6
- Ó¦Öú: 298 (´óѧÉú)
- ¹ó±ö: 0.247
- ½ð±Ò: 11336.3
- ºì»¨: 29
- Ìû×Ó: 1221
- ÔÚÏß: 538.8Сʱ
- ³æºÅ: 405284
- ×¢²á: 2007-06-17
- ÐÔ±ð: MM
- רҵ: ÉúÎï´ó·Ö×ӽṹÓ빦ÄÜ
- ¹ÜϽ: Êýѧ
¡¾´ð°¸¡¿Ó¦Öú»ØÌû
¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï
¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
vsroot: ½ð±Ò+10, ¡ïÓаïÖú 2015-09-20 15:18:13
vsroot: ½ð±Ò+5, ¡ï¡ï¡ïºÜÓаïÖú 2015-10-16 18:05:43
¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
vsroot: ½ð±Ò+10, ¡ïÓаïÖú 2015-09-20 15:18:13
vsroot: ½ð±Ò+5, ¡ï¡ï¡ïºÜÓаïÖú 2015-10-16 18:05:43
| Riemannian geometry is a global differential geometry. Locally we can define local coordinates and treat it as Euclidean space. We can define inner product, metric and angle etc. Differential geometry is opposite to integral geometry. When we talk about smoothness, we want to do differential. Thus Riemannian geometry is one kind of differential geometry since we need differential to calculate normal vector, tangent vector, and of course curvatures. There are many kinds of metric you can define locally. If it's Riemannian metric, you get Riemannian geometry. If you define other kinds of metric, you get other kinds of differential geometry. |

2Â¥2015-09-20 05:14:10







»Ø¸´´ËÂ¥