24小时热门版块排行榜    

CyRhmU.jpeg
查看: 1621  |  回复: 18
【奖励】 本帖被评价18次,作者pkusiyuan增加金币 14.2

pkusiyuan

银虫 (正式写手)


[资源] Heat Transfer in Industrial Combustion

Table of Contents
Chapter 1 Introduction
1.1 Importance of Heat Transfer in Industrial Combustion
1.1.1 Energy Consumption
1.1.2 Research Needs
1.2 Literature Discussion
1.2.1 Heat Transfer
1.2.2 Combustion
1.2.3 Heat Transfer and Combustion
1.3 Combustion System Components
1.3.1 Burners
1.3.1.1 Competing Priorities
1.3.1.2 Design Factors
1.3.1.2.1 Fuel
1.3.1.2.2 Oxidizer
1.3.1.2.3 Gas Recirculation
1.3.1.3 General Burner Types
1.3.1.3.1 Mixing Type
1.3.1.3.2 Oxidizer Type
1.3.1.3.3 Draft Type
1.3.1.3.4 Heating Type
1.3.2 Combustors
1.3.2.1 Design Considerations
1.3.2.1.1 Load Handling
1.3.2.1.2 Temperature
1.3.2.1.3 Heat Recovery
1.3.2.2 General Classifications
1.3.2.2.1 Load Processing Method
1.3.2.2.2 Heating Type
1.3.2.2.3 Geometry
1.3.2.2.4 Heat Recuperation
1.3.3 Heat Load
1.3.3.1 Process Tubes
1.3.3.2 Moving Substrate
1.3.3.3 Opaque Materials
1.3.3.4 Transparent Materials
1.3.4 Heat Recovery Devices
1.3.4.1 Recuperators
1.3.4.2 Regenerators
References
Chapter 2 Some Fundamentals of Combustion
2.1 Combustion Chemistry
2.1.1 Fuel Properties
2.1.2 Oxidizer Composition
© 2000 by CRC Press LLC
2.1.3 Mixture Ratio
2.1.4 Operating Regimes
2.2 Combustion Properties
2.2.1 Combustion Products
2.2.1.1 Oxidizer Composition
2.2.1.2 Mixture Ratio
2.2.1.3 Air and Fuel Preheat Temperature
2.2.1.4 Fuel Composition
2.2.2 Flame Temperature
2.2.2.1 Oxidizer and Fuel Composition
2.2.2.2 Mixture Ratio
2.2.2.3 Oxidizer and Fuel Preheat Temperature
2.2.3 Available Heat
2.2.4 Flue Gas Volume
2.3 Exhaust Product Transport Properties
2.3.1 Density
2.3.2 Specific Heat
2.3.3 Thermal Conductivity
2.3.4 Viscosity
2.3.5 Prandtl Number
2.3.6 Lewis Number
References
Chapter 3 Heat Transfer Modes
3.1 Introduction
3.2 Convection
3.2.1 Forced Convection
3.2.1.1 Forced Convection from Flames
3.2.1.2 Forced Convection from Outside Combustor Wall
3.2.1.3 Forced Convection from Hot Gases to Tubes
3.2.2 Natural Convection
3.2.2.1 Natural Convection from Flames
3.2.2.2 Natural Convection from Outside Combustor Wall
3.3 Radiation
3.3.1 Surface Radiation
3.3.2 Nonluminous Radiation
3.3.2.1 Theory
3.3.2.2 Combustion Studies
3.3.2.2.1 Total Radiation
3.3.2.2.2 Spectral Radiation
3.3.3 Luminous Radiation
3.3.3.1 Theory
3.3.3.2 Combustion Studies
3.3.3.2.1 Total Radiation
3.3.3.2.2 Spectral Radiation
3.4 Conduction
3.4.1 Steady-State Conduction
3.4.2 Transient Conduction
3.5 Phase Change
3.5.1 Melting
3.5.2 Boiling
© 2000 by CRC Press LLC
3.5.2.1 Internal Boiling
3.5.2.2 External Boiling
3.5.3 Condensation
References
Chapter 4 Heat Sources and Sinks
4.1 Heat Sources
4.1.1 Combustibles
4.1.1.1 Fuel Combustion
4.1.1.2 Volatile Combustion
4.1.2 Thermochemical Heat Release
4.1.2.1 Equilibrium TCHR
4.1.2.2 Catalytic TCHR
4.1.2.3 Mixed TCHR
4.2 Heat Sinks
4.2.1 Load
4.2.1.1 Tubes
4.2.1.2 Substrate
4.2.1.3 Granular Solid
4.2.1.4 Molten Liquid
4.2.1.5 Surface Conditions
4.2.1.5.1 Radiation
4.2.1.5.2 Catalyticity
4.2.2 Wall Losses
4.2.3 Openings
4.2.3.1 Radiation
4.2.3.2 Gas Flow Through Openings
4.2.4 Material Transport
References
Chapter 5 Computer Modeling
5.1 Combustion Modeling
5.2 Modeling Approaches
5.2.1 Fluid Dynamics
5.2.1.1 Moment Averaging
5.2.1.2 Vortex Methods
5.2.1.3 Spectral Methods
5.2.1.4 Direct Numerical Simulation
5.2.2 Geometry
5.2.2.1 Zero-Dimensional Modeling
5.2.2.2 One-Dimensional Modeling
5.2.2.3 Multi-dimensional Modeling
5.2.3 Reaction Chemistry
5.2.3.1 Nonreacting Flows
5.2.3.2 Simplified Chemistry
5.2.3.3 Complex Chemistry
5.2.4 Radiation
5.2.4.1 Nonradiating
5.2.4.2 Participating Media
5.2.5 Time Dependence
© 2000 by CRC Press LLC
5.2.5.1 Steady State
5.2.5.2 Transient
5.3 Simplified Models
5.4 Computational Fluid Dynamic Modeling
5.4.1 Increasing Popularity of CFD
5.4.2 Potential Problems of CFD
5.4.3 Equations
5.4.3.1 Fluid Dynamics
5.4.3.2 Heat Transfer
5.4.3.3 Chemistry
5.4.3.4 Multiple Phases
5.4.4 Boundary and Initial Conditions
5.4.4.1 Inlets and Outlets
5.4.4.2 Surfaces
5.4.4.3 Symmetry
5.4.5 Discretization
5.4.5.1 Finite Difference Technique
5.4.5.2 Finite Volume Technique
5.4.5.3 Finite Element Technique
5.4.5.4 Mixed
5.4.5.5 None
5.4.6 Solution Methods
5.4.7 Model Validation
5.4.8 Industrial Combustion Examples
5.4.8.1 Modeling Burners
5.4.8.2 Modeling Combustors
References
Chapter 6 Experimental Techniques
6.1 Introduction
6.2 Heat Flux
6.2.1 Total Heat Flux
6.2.1.1 Steady-State Uncooled Solids
6.2.1.2 Steady-State Cooled Solids
6.2.1.2.1 Single Cooling Circuit
6.2.1.2.2 Multiple Cooling Circuits
6.2.1.2.3 Surface Probe
6.2.1.3 Steady-State Cooled Gages
6.2.1.3.1 Gradient Through a Thin Solid Rod
6.2.1.3.2 Thin Disk Calorimeter
6.2.1.3.3 Heat Flux Transducer
6.2.1.4 Transient Uncooled Targets
6.2.1.5 Transient Uncooled Gages
6.2.1.5.1 Slug Calorimeter
6.2.1.5.2 Heat Flux Transducer
6.2.2 Radiant Heat Flux
6.2.2.1 Heat Flux Gage
6.2.2.2 Ellipsoidal Radiometer
6.2.2.3 Spectral Radiometer
6.2.2.4 Other Techniques
6.2.3 Convective Heat Flux
© 2000 by CRC Press LLC
6.3 Temperature
6.3.1 Gas Temperature
6.3.1.1 Suction Pyrometer
6.3.1.2 Optical Techniques
6.3.1.3 Fine Wire Thermocouples
6.3.1.4 Line Reversal
6.3.2 Surface Temperature
6.3.2.1 Embedded Thermocouple
6.3.2.2 Infrared Detectors
6.4 Gas Flow
6.4.1 Gas Velocity
6.4.1.1 Pitot Tubes
6.4.1.2 Laser Doppler Velocimetry
6.4.1.3 Other Techniques
6.4.2 Static Pressure Distribution
6.4.2.1 Stagnation Velocity Gradient
6.4.2.2 Stagnation Zone
6.5 Gas Species
6.6 Other Measurements
6.7 Physical Modeling
References
Chapter 7 Flame Impingement
7.1 Introduction
7.2 Experimental Conditions
7.2.1 Configurations
7.2.1.1 Flame Normal to a Cylinder in Crossflow
7.2.1.2 Flame Normal to a Hemispherically Nosed Cylinder
7.2.1.3 Flame Normal to a Plane Surface
7.2.1.4 Flame Parallel to a Plane Surface
7.2.2 Operating Conditions
7.2.2.1 Oxidizers
7.2.2.2 Fuels
7.2.2.3 Equivalence Ratios
7.2.2.4 Firing Rates
7.2.2.5 Reynolds Number
7.2.2.6 Burners
7.2.2.7 Nozzle Diameter
7.2.2.8 Location
7.2.3 Stagnation Targets
7.2.3.1 Size
7.2.3.2 Target Materials
7.2.3.3 Surface Preparation
7.2.3.4 Surface Temperatures
7.2.4 Measurements
7.3 Semianalytical Heat Transfer Solutions
7.3.1 Equation Parameters
7.3.1.1 Thermophysical Properties
7.3.1.2 Stagnation Velocity Gradient
7.3.1.2.1 Analytical Solutions
7.3.1.2.2 Empirical Correlations
© 2000 by CRC Press LLC
7.3.2 Equations
7.3.2.1 Sibulkin Results
7.3.2.2 Fay and Riddell Results
7.3.2.3 Rosner Results
7.3.3 Comparisons With Experiments
7.3.3.1 Forced Convection (Negligible TCHR)
7.3.3.1.1 Laminar Flow
7.3.3.1.2 Turbulent Flows
7.3.3.2 Forced Convection with TCHR
7.3.3.2.1 Laminar Flow
7.3.3.2.2 Turbulent Flow
7.3.4 Sample Calculations
7.3.4.1 Laminar Flames Without TCHR
7.3.4.2 Turbulent Flames Without TCHR
7.3.4.3 Laminar Flames with TCHR
7.3.5 Summary
7.4 Empirical Heat Transfer Correlations
7.4.1 Thermophysical Properties
7.4.2 Flames Impinging Normal to a Cylinder
7.4.2.1 Local Convection Heat Transfer
7.4.2.1.1 Laminar and Turbulent Flows
7.4.2.1.2 Turbulent Flows
7.4.2.2 Average Convection Heat Transfer
7.4.2.2.1 Laminar Flows
7.4.2.2.2 Laminar and Turbulent Flows
7.4.2.2.3 Flow Type Unspecified
7.4.2.3 Average Convection Heat Transfer with TCHR
7.4.2.3.1 Flow Type Unspecified
7.4.2.4 Average Radiation Heat Transfer
7.4.2.4.1 Laminar and Turbulent Flows
7.4.2.5 Maximum Convection and Radiation Heat Transfer
7.4.2.5.1 Turbulent Flows
7.4.3 Flames Impinging Normal to a Hemi-Nosed Cylinder
7.4.3.1 Local Convection Heat Transfer
7.4.3.1.1 Laminar and Turbulent Flows
7.4.3.1.2 Turbulent Flows
7.4.3.2 Local Convection Heat Transfer with TCHR
7.4.3.2.1 Turbulent Flows
7.4.4 Flames Impinging Normal to a Plane Surface
7.4.4.1 Local Convection Heat Transfer
7.4.4.1.1 Laminar Flows
7.4.4.1.2 Turbulent Flows
7.4.4.2 Local Convection Heat Transfer with TCHR
7.4.4.2.1 Laminar Flows
7.4.4.2.2 Turbulent Flows
7.4.4.3 Average Convection Heat Transfer
7.4.4.3.1 Laminar Flows
7.4.4.3.2 Turbulent Flows
7.4.5 Flames Parallel to a Plane Surface
7.4.5.1 Local Convection Heat Transfer With TCHR
© 2000 by CRC Press LLC
7.4.5.1.1 Laminar Flows
7.4.5.1.2 Turbulent Flows
7.4.5.2 Local Convection and Radiation Heat Transfer
7.4.5.2.1 Turbulent Flows
References
Chapter 8 Heat Transfer from Burners
8.1 Introduction
8.2 Open-Flame Burners
8.2.1 Momentum Effects
8.2.2 Flame Luminosity
8.2.3 Firing Rate Effects
8.2.4 Flame Shape Effects
8.3 Radiant Burners
8.3.1 Perforated Ceramic or Wire Mesh Radiant Burners
8.3.2 Flame Impingement Radiant Burners
8.3.3 Porous Refractory Radiant Burners
8.3.4 Advanced Ceramic Radiant Burners
8.3.5 Radiant Wall Burners
8.3.6 Radiant Tube Burners
8.4 Effects on Heat Transfer
8.4.1 Fuel Effects
8.4.1.1 Solid Fuels
8.4.1.2 Liquid Fuels
8.4.1.3 Gaseous Fuels
8.4.1.4 Fuel Temperature
8.4.2 Oxidizer Effects
8.4.2.1 Oxidizer Composition
8.4.2.2 Oxidizer Temperature
8.4.3 Staging Effects
8.4.3.1 Fuel Staging
8.4.3.2 Oxidizer Staging
8.4.4 Burner Orientation
8.4.4.1 Hearth-Fired Burners
8.4.4.2 Wall-Fired Burners
8.4.4.3 Roof-Fired Burners
8.4.4.4 Side-Fired Burners
8.4.5 Heat Recuperation
8.4.5.1 Regenerative Burners
8.4.5.2 Recuperative Burners
8.4.5.3 Furnace or Flue Gas Recirculation
8.4.6 Pulse Combustion
8.5 In-Flame Treatment
References
Chapter 9 Heat Transfer in Furnaces
9.1 Introduction
9.2 Furnaces
9.2.1 Firing Method
© 2000 by CRC Press LLC
9.2.1.1 Direct Firing
9.2.1.2 Indirect Firing
9.2.1.3 Heat Distribution
9.2.2 Load Processing Method
9.2.2.1 Batch Processing
9.2.2.2 Continuous Processing
9.2.2.3 Hybrid Processing
9.2.3 Heat Transfer Medium
9.2.3.1 Gaseous Medium
9.2.3.2 Vacuum
9.2.3.3 Liquid Medium
9.2.3.4 Solid Medium
9.2.4 Geometry
9.2.4.1 Rotary Geometry
9.2.4.2 Rectangular Geometry
9.2.4.3 Ladle Geometry
9.2.4.4 Vertical Cylindrical Geometry
9.2.5 Furnace Types
9.2.5.1 Reverberatory Furnace
9.2.5.2 Shaft Kiln
9.2.5.3 Rotary Furnace
9.3 Heat Recovery
9.3.1 Recuperators
9.3.2 Regenerators
9.3.3 Gas Recirculation
9.3.3.1 Flue Gas Recirculation
9.3.3.2 Furnace Gas Recirculation
References
Chapter 10 Lower Temperature Applications
10.1 Introduction
10.2 Ovens and Dryers
10.2.1 Predryer
10.2.2 Dryer
10.3 Fired Heaters
10.3.1 Reformer
10.3.2 Process Heater
10.4 Heat Treating
10.4.1 Standard Atmosphere
10.4.2 Special Atmosphere
References
Chapter 11 Higher Temperature Applications
11.1 Introduction
11.1.1 Furnaces
11.1.2 Industries
11.2 Metals Industry
11.2.1 Ferrous Metal Production
11.2.1.1 Electric Arc Furnace
11.2.1.2 Smelting
© 2000 by CRC Press LLC
11.2.1.3 Ladle Preheating
11.2.1.4 Reheating Furnace
11.2.1.5 Forging
11.2.2 Aluminum Metal Production
11.3 Minerals Industry
11.3.1 Glass
11.3.1.1 Types of Traditional Glass-Melting Furnaces
11.3.1.2 Unit Melter
11.3.1.3 Recuperative Melter
11.3.1.4 Regenerative or Siemens Furnace
11.3.1.4.1 End-Port Regenerative Furnace
11.3.1.4.2 Side-Port Regenerative Furnace
11.3.1.5 Oxygen-Enhanced Combustion for Glass Production
11.3.1.6 Advanced Techniques for Glass Production
11.3.2 Cement and Lime
11.3.3 Bricks, Refractories, and Ceramics
11.4 Waste Incineration
11.4.1 Types of Incinerators
11.4.1.1 Municipal Waste Incinerators
11.4.1.2 Sludge Incinerators
11.4.1.3 Mobile Incinerators
11.4.1.4 Transportable Incinerators
11.4.1.5 Fixed Hazardous Waste Incinerators
11.4.2 Heat Transfer in Waste Incineration
References
Chapter 12 Advanced Combustion Systems
12.1 Introduction
12.2 Oxygen-Enhanced Combustion
12.2.1 Typical Use Methods
12.2.1.1 Air Enrichment
12.2.1.2 O2 Lancing
12.2.1.3 Oxy/Fuel
12.2.1.4 Air-Oxy/Fuel
12.2.2 Operating Regimes
12.2.3 Heat Transfer Benefits
12.2.3.1 Increased Productivity
12.2.3.2 Higher Thermal Efficiencies
12.2.3.3 Higher Heat Transfer Efficiency
12.2.3.4 Increased Flexibility
12.2.4 Potential Heat Transfer Problems
12.2.4.1 Refractory Damage
12.2.4.2 Nonuniform Heating
12.2.4.2.1 Hotspots
12.2.4.2.2 Reduction in Convection
12.2.5 Industrial Heating Applications
12.2.5.1 Metals
12.2.5.2 Minerals
12.2.5.3 Incineration
12.2.5.4 Other
© 2000 by CRC Press LLC
12.3 Submerged Combustion
12.3.1 Metals Production
12.3.2 Minerals Production
12.3.3 Liquid Heating
12.4 Miscellaneous
12.4.1 Surface Combustor-Heater
12.4.2 Direct-Fired Cylinder Dryer
References
Appendices
Appendix A: Reference Sources for Further Information
Appendix B: Common Conversions
Appendix C: Methods of Expressing Mixture Ratios for CH4, C3H8, and H2
Appendix D: Properties for CH4, C3H8, and H2 Flames
Appendix E: Fluid Dynamics Equations
Appendix F: Material Properties
© 2000
回复此楼

» 本帖附件资源列表

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

莫洛lly

新虫 (初入文坛)


★★★★★ 五星级,优秀推荐

顶一下,感谢分享!很有帮助
5楼2015-12-25 11:01:26
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
2015-05-07 11:27   回复  
五星好评  顶一下,感谢分享!
2015-05-29 18:18   回复  
五星好评  顶一下,感谢分享!
2015-11-01 22:46   回复  
五星好评  顶一下,感谢分享!
a186063766楼
2016-01-21 11:27   回复  
五星好评  顶一下,感谢分享!
ye84462167楼
2016-01-21 13:15   回复  
五星好评  顶一下,感谢分享!
高怀斌8楼
2016-01-31 22:56   回复  
五星好评  顶一下,感谢分享!
ustblzl9楼
2016-10-05 09:34   回复  
五星好评  顶一下,感谢分享!
2016-12-05 14:16   回复  
三星好评  顶一下,感谢分享!
2017-02-17 10:58   回复  
五星好评  顶一下,感谢分享!
jzjsino12楼
2017-03-22 16:04   回复  
五星好评  顶一下,感谢分享!
marchfeng13楼
2017-10-12 12:16   回复  
五星好评  顶一下,感谢分享!
孟照成14楼
2017-12-08 16:31   回复  
五星好评  顶一下,感谢分享!
2017-12-28 10:23   回复  
五星好评  顶一下,感谢分享!
tianwk16楼
2018-01-03 20:50   回复  
五星好评  顶一下,感谢分享!
sunhu11717楼
2019-05-06 11:04   回复  
五星好评  顶一下,感谢分享!
qijl18楼
2019-07-10 17:03   回复  
五星好评  顶一下,感谢分享!
2019-08-22 16:01   回复  
五星好评  顶一下,感谢分享!
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见