| 查看: 1153 | 回复: 14 | ||
| 【奖励】 本帖被评价13次,作者pkusiyuan增加金币 10.4 个 | ||
[资源]
Wiley2007年Propellants And Explosives
|
||
|
论坛中以前有人发过链接,但好像已失效,这里直接附带着pdf文件 作者:Naminosuke Kubota Table of Contents Preface XVII Preface to the Second Edition XIX 1 Foundations of Pyrodynamics 1 1.1 Heat and Pressure 1 1.1.1 First Law of Thermodynamics 1 1.1.2 Specific Heat 2 1.1.3 Entropy Change 4 1.2 Thermodynamics in a Flow Field 5 1.2.1 One-Dimensional Steady-State Flow 5 1.2.1.1 Sonic Velocity and Mach Number 5 1.2.1.2 Conservation Equations in a Flow Field 6 1.2.1.3 Stagnation Point 6 1.2.2 Formation of Shock Waves 7 1.2.3 Supersonic Nozzle Flow 10 1.3 Formation of Propulsive Forces 12 1.3.1 Momentum Change and Thrust 12 1.3.2 Rocket Propulsion 13 1.3.2.1 Thrust Coefficient 14 1.3.2.2 Characteristic Velocity 15 1.3.2.3 Specific Impulse 16 1.3.3 Gun Propulsion 16 1.3.3.1 Thermochemical Process of Gun Propulsion 16 1.3.3.2 Internal Ballistics 18 1.4 Formation of Destructive Forces 20 1.4.1 Pressure and Shock Wave 20 1.4.2 Shock Wave Propagation and Reflection in Solid Materials 20 2 Thermochemistry of Combustion 23 2.1 Generation of Heat Energy 23 2.1.1 Chemical Bond Chemical Bond Energy 23 2.1.2 Heat of Formation and Heat of Explosion 24 VI 2.1.3 Thermal Equilibrium 25 2.2 Adiabatic Flame Temperature 27 2.3 Chemical Reaction 31 2.3.1 Thermal Dissociation 31 2.3.2 Reaction Rate 31 2.4 Evaluation of Chemical Energy 32 2.4.1 Heats of Formation of Reactants and Products 33 2.4.2 Oxygen Balance 36 2.4.3 Thermodynamic Energy 36 3 Combustion Wave Propagation 41 3.1 Combustion Reactions 41 3.1.1 Ignition and Combustion 41 3.1.2 Premixed and Diffusion Flames 42 3.1.3 Laminar and Turbulent Flames 42 3.2 Combustion Wave of a Premixed Gas 43 3.2.1 Governing Equations for the Combustion Wave 43 3.2.2 Rankine−Hugoniot Relationships 44 3.2.3 Chapman−Jouguet Points 46 3.3 Structures of Combustion Waves 49 3.3.1 Detonation Wave 49 3.3.2 Deflagration Wave 51 3.4 Ignition Reactions 53 3.4.1 The Ignition Process 53 3.4.2 Thermal Theory of Ignition 53 3.4.3 Flammability Limit 54 3.5 Combustion Waves of Energetic Materials 55 3.5.1 Thermal Theory of Burning Rate 55 3.5.1.1 Thermal Model of Combustion Wave Structure 55 3.5.1.2 Thermal Structure in the Condensed Phase 57 3.5.1.3 Thermal Structure in the Gas Phase 59 3.5.1.4 Burning Rate Model 61 3.5.2 Flame Stand-Off Distance 63 3.5.3 Burning Rate Characteristics of Energetic Materials 64 3.5.3.1 Pressure Exponent of Burning Rate 64 3.5.3.2 Temperature Sensitivity of Burning Rate 64 3.5.4 Analysis of Temperature Sensitivity of Burning Rate 65 4 Energetics of Propellants and Explosives 69 4.1 Crystalline Materials 69 4.1.1 Physicochemical Properties of Crystalline Materials 69 4.1.2 Perchlorates 70 4.1.2.1 Ammonium Perchlorate 71 4.1.2.2 Nitronium Perchlorate 72 4.1.2.3 Potassium Perchlorate 72 4.1.3 Nitrates 73 Table of Contents VII 4.1.3.1 Ammonium Nitrate 73 4.1.3.2 Potassium Nitrate and Sodium Nitrate 74 4.1.3.3 Pentaerythrol Tetranitrate 74 4.1.3.4 Triaminoguanidine Nitrate 75 4.1.4 Nitro Compounds 75 4.1.5 Nitramines 75 4.2 Polymeric Materials 77 4.2.1 Physicochemical Properties of Polymeric Materials 77 4.2.2 Nitrate Esters 77 4.2.3 Inert Polymers 79 4.2.4 Azide Polymers 82 4.2.4.1 GAP 83 4.2.4.2 BAMO 84 4.3 Classification of Propellants and Explosives 86 4.4 Formulation of Propellants 89 4.5 Nitropolymer Propellants 90 4.5.1 Single-Base Propellants 90 4.5.2 Double-Base Propellants 91 4.5.2.1 NC-NG Propellants 91 4.5.2.2 NC-TMETN Propellants 93 4.5.2.3 Nitro-Azide Polymer Propellants 93 4.5.2.4 Chemical Materials of Double-Base Propellants 94 4.6 Composite Propellants 95 4.6.1 AP Composite Propellants 96 4.6.1.1 AP-HTPB Propellants 96 4.6.1.2 AP-GAP Propellants 98 4.6.1.3 Chemical Materials of AP Composite Propellants 98 4.6.2 AN Composite Propellants 99 4.6.3 Nitramine Composite Propellants 100 4.6.4 HNF Composite Propellants 102 4.6.5 TAGN Composite Propellants 103 4.7 Composite-Modified Double-Base Propellants 104 4.7.1 AP-CMDB Propellants 104 4.7.2 Nitramine CMDB Propellants 105 4.7.3 Triple-Base Propellants 106 4.8 Black Powder 107 4.9 Formulation of Explosives 108 4.9.1 Industrial Explosives 109 4.9.1.1 ANFO Explosives 109 4.9.1.2 Slurry Explosives 109 4.9.2 Military Explosives 110 4.9.2.1 TNT-Based Explosives 110 4.9.2.2 Plastic-Bonded Explosives 110 Table of Contents VIII 5 Combustion of Crystalline and Polymeric Materials 113 5.1 Combustion of Crystalline Materials 113 5.1.1 Ammonium Perchlorate (AP) 113 5.1.1.1 Thermal Decomposition 113 5.1.1.2 Burning Rate 114 5.1.1.3 Combustion Wave Structure 115 5.1.2 Ammonium Nitrate (AN) 115 5.1.2.1 Thermal Decomposition 115 5.1.3 HMX 116 5.1.3.1 Thermal Decomposition 116 5.1.3.2 Burning Rate 116 5.1.3.3 Gas-Phase Reaction 117 5.1.3.4 Combustion Wave Structure and Heat Transfer 118 5.1.4 Triaminoguanidine Nitrate (TAGN) 119 5.1.4.1 Thermal Decomposition 119 5.1.4.2 Burning Rate 123 5.1.4.3 Combustion Wave Structure and Heat Transfer 123 5.1.5 ADN (Ammonium Dinitramide) 125 5.1.6 HNF (Hydrazinium Nitroformate) 126 5.2 Combustion of Polymeric Materials 127 5.2.1 Nitrate Esters 127 5.2.1.1 Decomposition of Methyl Nitrate 128 5.2.1.2 Decomposition of Ethyl Nitrate 128 5.2.1.3 Overall Decomposition Process of Nitrate Esters 129 5.2.1.4 Gas-Phase Reactions of NO2 and NO 129 5.2.2 Glycidyl Azide Polymer (GAP) 131 5.2.2.1 Thermal Decomposition and Burning Rate 131 5.2.2.2 Combustion Wave Structure 133 5.2.3 Bis-azide methyl oxetane (BAMO) 134 5.2.3.1 Thermal Decomposition and Burning Rate 134 5.2.3.2 Combustion Wave Structure and Heat Transfer 137 6 Combustion of Double-Base Propellants 143 6.1 Combustion of NC-NG Propellants 143 6.1.1 Burning Rate Characteristics 143 6.1.2 Combustion Wave Structure 144 6.1.3 Burning Rate Model 148 6.1.3.1 Model for Heat Feedback from the Gas Phase to the Condensed Phase 148 6.1.3.2 Burning Rate Calculated by a Simplified Gas-Phase Model 149 6.1.4 Energetics of the Gas Phase and Burning Rate 150 6.1.5 Temperature Sensitivity of Burning Rate 156 6.2 Combustion of NC-TMETN Propellants 158 6.2.1 Burning Rate Characteristics 158 6.2.2 Combustion Wave Structure 160 6.3 Combustion of Nitro-Azide Propellants 160 Table of Contents IX 6.3.1 Burning Rate Characteristics 160 6.3.2 Combustion Wave Structure 160 6.4 Catalyzed Double-Base Propellants 162 6.4.1 Super-Rate, Plateau, and Mesa Burning 162 6.4.2 Effects of Lead Catalysts 164 6.4.2.1 Burning Rate Behavior of Catalyzed Liquid Nitrate Esters 164 6.4.2.2 Effect of Lead Compounds on Gas-Phase Reactions 164 6.4.3 Combustion of Catalyzed Double-Base Propellants 165 6.4.3.1 Burning Rate Characteristics 165 6.4.3.2 Reaction Mechanism in the Dark Zone 169 6.4.3.3 Reaction Mechanism in the Fizz Zone Structure 170 6.4.4 Combustion Models of Super-Rate, Plateau, and Mesa Burning 171 6.4.5 LiF-Catalyzed Double-Base Propellants 173 6.4.6 Ni-Catalyzed Double-Base Propellants 175 6.4.7 Suppression of Super-Rate and Plateau Burning 177 7 Combustion of Composite Propellants 181 7.1 AP Composite Propellants 181 7.1.1 Combustion Wave Structure 181 7.1.1.1 Premixed Flame of AP Particles and Diffusion Flame 181 7.1.1.2 Combustion Wave Structure of Oxidizer-Rich AP Propellants 185 7.1.2 Burning Rate Characteristics 189 7.1.2.1 Effect of AP Particle Size 189 7.1.2.2 Effect of the Binder 189 7.1.2.3 Temperature Sensitivity 192 7.1.3 Catalyzed AP Composite Propellants 194 7.1.3.1 Positive Catalysts 195 7.1.3.2 LiF Negative Catalyst 197 7.1.3.3 SrCO3 Negative Catalyst 200 7.2 Nitramine Composite Propellants 203 7.2.1 Burning Rate Characteristics 203 7.2.1.1 Effect of Nitramine Particle Size 203 7.2.1.2 Effect of Binder 203 7.2.2 Combustion Wave Structure 204 7.2.3 HMX-GAP Propellants 207 7.2.3.1 Physicochemical Properties of Propellants 207 7.2.3.2 Burning Rate and Combustion Wave Structure 207 7.2.4 Catalyzed Nitramine Composite Propellants 210 7.2.4.1 Super-Rate Burning of HMX Composite Propellants 210 7.2.4.2 Super-Rate Burning of HMX-GAP Propellants 211 7.2.4.3 LiF Catalysts for Super-Rate Burning 213 7.2.4.4 Catalyst Action of LiF on Combustion Wave 215 7.3 AP-Nitramine Composite Propellants 217 7.3.1 Theoretical Performance 217 7.3.2 Burning Rate 219 7.3.2.1 Effects of AP/RDX Mixture Ratio and Particle Size 219 Table of Contents X 7.3.2.2 Effect of Binder 221 7.4 TAGN-GAP Composite Propellants 223 7.4.1 Physicochemical Characteristics 223 7.4.2 Burning Rate and Combustion Wave Structure 224 7.5 AN-Azide Polymer Composite Propellants 225 7.5.1 AN-GAP Composite Propellants 225 7.5.2 AN-(BAMO-AMMO)-HMX Composite Propellants 227 7.6 AP-GAP Composite Propellants 228 7.7 ADN , HNF, and HNIW Composite Propellants 230 8 Combustion of CMDB Propellants 235 8.1 Characteristics of CMDB Propellants 235 8.2 AP-CMDB Propellants 235 8.2.1 Flame Structure and Combustion Mode 235 8.2.2 Burning Rate Models 237 8.3 Nitramine-CMDB Propellants 239 8.3.1 Flame Structure and Combustion Mode 239 8.3.2 Burning Rate Characteristics 242 8.3.3 Thermal Wave Structure 243 8.3.4 Burning Rate Model 248 8.4 Plateau Burning of Catalyzed HMX-CMDB Propellants 249 8.4.1 Burning Rate Characteristics 249 8.4.2 Combustion Wave Structure 250 8.4.2.1 Flame Stand-off Distance 250 8.4.2.2 Catalyst Activity 252 8.4.2.3 Heat Transfer at the Burning Surface 253 9 Combustion of Explosives 257 9.1 Detonation Characteristics 257 9.1.1 Detonation Velocity and Pressure 257 9.1.2 Estimation of Detonation Velocity of CHNO Explosives 258 9.1.3 Equation of State for Detonation of Explosives 259 9.2 Density and Detonation Velocity 260 9.2.1 Energetic Explosive Materials 260 9.2.2 Industrial Explosives 261 9.2.2.1 ANFO Explosives 262 9.2.2.2 Slurry and Emulsion Explosives 262 9.2.3 Military Explosives 263 9.2.3.1 TNT-Based Explosives 263 9.2.3.2 Plastic-Bonded Explosives 264 9.3 Critical Diameter 265 9.4 Applications of Detonation Phenomena 265 9.4.1 Formation of a Flat Detonation Wave 265 9.4.2 Munroe Effect 267 9.4.3 Hopkinnson Effect 269 9.4.4 Underwater Explosion 270 Table of Contents XI 10 Formation of Energetic Pyrolants 273 10.1 Differentiation of Propellants, Explosives, and Pyrolants 273 10.1.1 Thermodynamic Energy of Pyrolants 274 10.1.2 Thermodynamic Properties 275 10.2 Energetics of Pyrolants 276 10.2.1 Reactants and Products 276 10.2.2 Generation of Heat and Products 277 10.3 Energetics of Elements 278 10.3.1 Physicochemical Properties of Elements 278 10.3.2 Heats of Combustion of Elements 280 10.4 Selection Criteria of Chemicals 283 10.4.1 Characteristics of Pyrolants 283 10.4.2 Physicochemical Properties of Pyrolants 284 10.4.3 Formulations of Pyrolants 286 10.5 Oxidizer Components 289 10.5.1 Metallic Crystalline Oxidizers 290 10.5.1.1 Potassium Nitrate 290 10.5.1.2 Potassium Perchlorate 291 10.5.1.3 Potassium Chlorate 291 10.5.1.4 Barium Nitrate 291 10.5.1.5 Barium Chlorate 291 10.5.1.6 Strontium Nitrate 292 10.5.1.7 Sodium Nitrate 292 10.5.2 Metallic Oxides 292 10.5.3 Metallic Sulfides 293 10.5.4 Fluorine Compounds 293 10.6 Fuel Components 294 10.6.1 Metallic Fuels 294 10.6.2 Non-metallic Solid Fuels 296 10.6.2.1 Boron 296 10.6.2.2 Carbon 297 10.6.2.3 Silicon 297 10.6.2.4 Sulfur 297 10.6.3 Polymeric Fuels 298 10.6.3.1 Nitropolymers 298 10.6.3.2 Polymeric Azides 298 10.6.3.3 Hydrocarbon Polymers 298 10.7 Metal Azides 299 11 Combustion Propagation of Pyrolants 301 11.1 Physicochemical Structures of Combustion Waves 301 11.1.1 Thermal Decomposition and Heat Release Process 301 11.1.2 Homogeneous Pyrolants 302 11.1.3 Heterogeneous Pyrolants 302 11.1.4 Pyrolants as Igniters 303 11.2 Combustion of Metal Particles 304 Table of Contents XII 11.2.1 Oxidation and Combustion Processes 305 11.2.1.1 Aluminum Particles 305 11.2.1.2 Magnesium Particles 305 11.2.1.3 Boron Particles 306 11.2.1.4 Zirconium Particles 306 11.3 Black Powder 306 11.3.1 Physicochemical Properties 306 11.3.2 Reaction Process and Burning Rate 307 11.4 Li-SF6 Pyrolants 307 11.4.1 Reactivity of Lithium 307 11.4.2 Chemical Characteristics of SF6 307 11.5 Zr Pyrolants 308 11.5.1 Reactivity with BaCrO4 308 11.5.2 Reactivity with Fe2O3 309 11.6 Mg-Tf Pyrolants 309 11.6.1 Thermochemical Properties and Energetics 309 11.6.2 Reactivity of Mg and Tf 311 11.6.3 Burning Rate Characteristics 311 11.6.4 Combustion Wave Structure 314 11.7 B-KNO3 Pyrolants 315 11.7.1 Thermochemical Properties and Energetics 315 11.7.2 Burning Rate Characteristics 316 11.8 Ti-KNO3 and Zr-KNO3 Pyrolants 317 11.8.1 Oxidation Process 317 11.8.2 Burning Rate Characteristics 318 11.9 Metal-GAP Pyrolants 318 11.9.1 Flame Temperature and Combustion Products 318 11.9.2 Thermal Decomposition Process 319 11.9.3 Burning Rate Characteristics 319 11.10 Ti-C Pyrolants 320 11.10.1 Thermochemical Properties of Titanium and Carbon 320 11.10.2 Reactivity of Tf with Ti-C Pyrolants 321 11.10.3 Burning Rate Characteristics 321 11.11 NaN3 Pyrolants 322 11.11.1 Thermochemical Properties of NaN3 Pyrolants 322 11.11.2 NaN3 Pyrolant Formulations 322 11.11.3 Burning Rate Characteristics 323 11.11.4 Combustion Residue Analysis 324 11.12 GAP-AN Pyrolants 324 11.12.1 Thermochemical Characteristics 324 11.12.2 Burning Rate Characteristics 324 11.12.3 Combustion Wave Structure and Heat Transfer 325 11.13 Nitramine Pyrolants 325 11.13.1 Physicochemical Properties 325 11.13.2 Combustion Wave Structures 325 11.14 B-AP Pyrolants 326 Table of Contents XIII 11.14.1 Thermochemical Characteristics 326 11.14.2 Burning Rate Characteristics 327 11.14.3 Burning Rate Analysis 329 11.14.4 Site and Mode of Boron Combustion in the Combustion Wave 331 11.15 Friction Sensitivity of Pyrolants 332 11.15.1 Definition of Friction Energy 332 11.15.2 Effect of Organic Iron and Boron Compounds 332 12 Emission from Combustion Products 337 12.1 Fundamentals of Light Emission 337 12.1.1 Nature of Light Emission 337 12.1.2 Black-Body Radiation 338 12.1.3 Emission and Absorption by Gases 339 12.2 Light Emission from Flames 340 12.2.1 Emission from Gaseous Flames 340 12.2.2 Continuous Emission from Hot Particles 341 12.2.3 Colored Light Emitters 341 12.3 Smoke Emission 342 12.3.1 Physical Smoke and Chemical Smoke 342 12.3.2 White Smoke Emitters 343 12.3.3 Black Smoke Emitters 344 12.4 Smokeless Pyrolants 344 12.4.1 Nitropolymer Pyrolants 344 12.4.2 Ammonium Nitrate Pyrolants 345 12.5 Smoke Characteristics of Pyrolants 346 12.6 Smoke and Flame Characteristics of Rocket Motors 352 12.6.1 Smokeless and Reduced Smoke 352 12.6.2 Suppression of Rocket Plume 354 12.6.2.1 Effect of Chemical Reaction Suppression 355 12.6.2.2 Effect of Nozzle Expansion 358 12.7 HCl Reduction from AP Propellants 360 12.7.1 Background of HCl Reduction 360 12.7.2 Reduction of HCl by the Formation of Metal Chlorides 361 12.8 Reduction of Infrared Emission from Combustion Products 363 13 Transient Combustion of Propellants and Pyrolants 367 13.1 Ignition Transient 367 13.1.1 Convective and Conductive Ignition 367 13.1.2 Radiative Ignition 369 13.2 Ignition for Combustion 370 13.2.1 Description of the Ignition Process 370 13.2.2 Ignition Process 372 13.3 Erosive Burning Phenomena 374 13.3.1 Threshold Velocity 374 13.3.2 Effect of Cross-Flow 376 13.3.3 Heat Transfer through a Boundary Layer 376 Table of Contents XIV 13.3.4 Determination of Lenoir−Robilard Parameters 378 13.4 Combustion Instability 380 13.4.1 T* Combustion Instability 380 13.4.2 L* Combustion Instability 383 13.4.3 Acoustic Combustion Instability 386 13.4.3.1 Nature of Oscillatory Combustion 386 13.4.3.2 Combustion Instability Test 387 13.4.3.3 Model for Suppression of Combustion Instability 395 13.5 Combustion under Acceleration 396 13.5.1 Burning Rate Augmentation 396 13.5.2 Effect of Aluminum Particles 397 13.6 Wired Propellant Burning 398 13.6.1 Heat-Transfer Process 398 13.6.2 Burning Rate Augmentation 400 14 Rocket Thrust Modulation 405 14.1 Combustion Phenomena in a Rocket Motor 405 14.1.1 Thrust and Burning Time 405 14.1.2 Combustion Efficiency in a Rocket Motor 407 14.1.3 Stability Criteria for a Rocket Motor 410 14.1.4 Temperature Sensitivity of Pressure in a Rocket Motor 412 14.2 Dual-Thrust Motor 414 14.2.1 Principles of a Dual-Thrust Motor 414 14.2.2 Single-Grain Dual-Thrust Motor 414 14.2.3 Dual-Grain Dual-Thrust Motor 417 14.2.3.1 Mass Generation Rate and Mass Discharge Rate 417 14.2.3.2 Determination of Design Parameters 418 14.3 Thrust Modulator 421 14.4 Erosive Burning in a Rocket Motor 421 14.4.1 Head-End Pressure 421 14.4.2 Determination of Erosive Burning Effect 423 14.5 Nozzleless Rocket Motor 426 14.5.1 Principles of the Nozzleless Rocket Motor 426 14.5.2 Flow Characteristics in a Nozzleless Rocket 427 14.5.3 Combustion Performance Analysis 429 14.6 Gas-Hybrid Rockets 430 14.6.1 Principles of the Gas-Hybrid Rocket 430 14.6.2 Thrust and Combustion Pressure 432 14.6.3 Pyrolants used as Gas Generators 433 15 Ducted Rocket Propulsion 439 15.1 Fundamentals of Ducted Rocket Propulsion 439 15.1.1 Solid Rockets, Liquid Ramjets, and Ducted Rockets 439 15.1.2 Structure and Operational Process 440 15.2 Design Parameters of Ducted Rockets 441 15.2.1 Thrust and Drag 441 Table of Contents XV 15.2.2 Determination of Design Parameters 442 15.2.3 Optimum Flight Envelope 444 15.2.4 Specific Impulse of Flight Mach Number 444 15.3 Performance Analysis of Ducted Rockets 445 15.3.1 Fuel-Flow System 445 15.3.1.1 Non-Choked Fuel-Flow System 446 15.3.1.2 Fixed Fuel-Flow System 446 15.3.1.3 Variable Fuel-Flow System 447 15.4 Principle of the Variable Fuel-Flow Ducted Rocket 447 15.4.1 Optimization of Energy Conversion 447 15.4.2 Control of Fuel-Flow Rate 447 15.5 Energetics of Gas-Generating Pyrolants 450 15.5.1 Required Physicochemical Properties 450 15.5.2 Burning Rate Characteristics of Gas-Generating Pyrolants 451 15.5.2.1 Burning Rate and Pressure Exponent 451 15.5.2.2 Wired Gas-Generating Pyrolants 452 15.5.3 Pyrolants for Variable Fuel-Flow Ducted Rockets 453 15.5.4 GAP Pyrolants 453 15.5.5 Metal Particles as Fuel Components 455 15.5.6 GAP-B Pyrolants 456 15.5.7 AP Composite Pyrolants 458 15.5.8 Effect of Metal Particles on Combustion Stability 458 15.6 Combustion Tests for Ducted Rockets 459 15.6.1 Combustion Test Facility 459 15.6.2 Combustion of Variable-Flow Gas Generator 460 15.6.3 Combustion Efficiency of Multi-Port Air-Intake 464 Appendix A 469 List of Abbreviations of Energetic Materials 469 Appendix B 471 Mass and Heat Transfer in a Combustion Wave 471 B.1 Conservation Equations at a Steady State in a One-Dimensional Flow Field 472 B.1.1 Mass Conservation Equation 472 B.1.2 Momentum Conservation Equation 472 B.1.3 Energy Conservation Equation 473 B.1.4 Conservation Equations of Chemical Species 474 B.2 Generalized Conservation Equations at a Steady-State in a Flow Field 475 Appendix C 477 Shock Wave Propagation in a Two-Dimensional Flow Field 477 C.1 Oblique Shock Wave 477 C.2 Expansion Wave 481 C.3 Diamond Shock Wave 481 Table of Contents XVI Appendix D Supersonic Air-Intake 483 D.1 Compression Characteristics of Diffusers 483 D.1.1 Principles of a Diffuser 483 D.1.2 Pressure Recovery 485 D.2 Air-Intake System 487 D.2.1 External Compression System 487 D.2.2 Internal Compression System 487 D.2.3 Air-Intake Design 488 Appendix E Measurements of Burning Rate and Combustion Wave Structure 491 Index 493 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Kubota_-_Propellants_And_Explosives_-_Thermochemical_Aspects_Of_Combustion_2E_(Wiley,_2007).pdf
2015-01-29 23:05:05, 4.03 M
» 猜你喜欢
职称评审没过,求安慰
已经有41人回复
回收溶剂求助
已经有7人回复
硝基苯如何除去
已经有3人回复
A期刊撤稿
已经有4人回复
垃圾破二本职称评审标准
已经有17人回复
投稿Elsevier的Neoplasia杂志,到最后选publishing options时页面空白,不能完成投稿
已经有22人回复
EST投稿状态问题
已经有7人回复
毕业后当辅导员了,天天各种学生超烦
已经有4人回复
求助文献
已经有3人回复
三无产品还有机会吗
已经有6人回复
» 本主题相关价值贴推荐,对您同样有帮助:
简单回复
2015-02-01 15:22
回复
五星好评 顶一下,感谢分享!
2015-02-03 07:59
回复
五星好评 顶一下,感谢分享!
2015-03-14 01:08
回复
五星好评 顶一下,感谢分享!
秋水无敌5楼
2015-03-19 19:40
回复
五星好评 顶一下,感谢分享!
2015-03-20 15:24
回复
五星好评 顶一下,感谢分享!
T_W-探索者7楼
2015-08-19 00:03
回复
五星好评 顶一下,感谢分享!
2015-12-03 16:38
回复
五星好评 顶一下,感谢分享!
mechtest9楼
2015-12-03 17:12
回复
五星好评 顶一下,感谢分享!
天空空199110楼
2016-06-16 17:23
回复
五星好评 顶一下,感谢分享!
mechtest11楼
2016-06-17 12:56
回复
顶一下,感谢分享!
R2BBr12楼
2016-06-18 02:22
回复
五星好评 顶一下,感谢分享!
143261356013楼
2016-06-26 09:08
回复
五星好评 顶一下,感谢分享!
atlas041214楼
2016-10-23 10:49
回复
五星好评 顶一下,感谢分享!
100406954415楼
2020-11-10 15:37
回复
五星好评 顶一下,感谢分享!













回复此楼