24小时热门版块排行榜    

查看: 1012  |  回复: 14
【奖励】 本帖被评价13次,作者pkusiyuan增加金币 10.4

pkusiyuan

银虫 (正式写手)


[资源] Wiley2007年Propellants And Explosives

论坛中以前有人发过链接,但好像已失效,这里直接附带着pdf文件
作者:Naminosuke Kubota
Table of Contents
Preface XVII
Preface to the Second Edition XIX
1 Foundations of Pyrodynamics 1
1.1 Heat and Pressure 1
1.1.1 First Law of Thermodynamics 1
1.1.2 Specific Heat 2
1.1.3 Entropy Change 4
1.2 Thermodynamics in a Flow Field 5
1.2.1 One-Dimensional Steady-State Flow 5
1.2.1.1 Sonic Velocity and Mach Number 5
1.2.1.2 Conservation Equations in a Flow Field 6
1.2.1.3 Stagnation Point 6
1.2.2 Formation of Shock Waves 7
1.2.3 Supersonic Nozzle Flow 10
1.3 Formation of Propulsive Forces 12
1.3.1 Momentum Change and Thrust 12
1.3.2 Rocket Propulsion 13
1.3.2.1 Thrust Coefficient 14
1.3.2.2 Characteristic Velocity 15
1.3.2.3 Specific Impulse 16
1.3.3 Gun Propulsion 16
1.3.3.1 Thermochemical Process of Gun Propulsion 16
1.3.3.2 Internal Ballistics 18
1.4 Formation of Destructive Forces 20
1.4.1 Pressure and Shock Wave 20
1.4.2 Shock Wave Propagation and Reflection in Solid Materials 20
2 Thermochemistry of Combustion 23
2.1 Generation of Heat Energy 23
2.1.1 Chemical Bond Chemical Bond Energy 23
2.1.2 Heat of Formation and Heat of Explosion 24
VI
2.1.3 Thermal Equilibrium 25
2.2 Adiabatic Flame Temperature 27
2.3 Chemical Reaction 31
2.3.1 Thermal Dissociation 31
2.3.2 Reaction Rate 31
2.4 Evaluation of Chemical Energy 32
2.4.1 Heats of Formation of Reactants and Products 33
2.4.2 Oxygen Balance 36
2.4.3 Thermodynamic Energy 36
3 Combustion Wave Propagation 41
3.1 Combustion Reactions 41
3.1.1 Ignition and Combustion 41
3.1.2 Premixed and Diffusion Flames 42
3.1.3 Laminar and Turbulent Flames 42
3.2 Combustion Wave of a Premixed Gas 43
3.2.1 Governing Equations for the Combustion Wave 43
3.2.2 Rankine−Hugoniot Relationships 44
3.2.3 Chapman−Jouguet Points 46
3.3 Structures of Combustion Waves 49
3.3.1 Detonation Wave 49
3.3.2 Deflagration Wave 51
3.4 Ignition Reactions 53
3.4.1 The Ignition Process 53
3.4.2 Thermal Theory of Ignition 53
3.4.3 Flammability Limit 54
3.5 Combustion Waves of Energetic Materials 55
3.5.1 Thermal Theory of Burning Rate 55
3.5.1.1 Thermal Model of Combustion Wave Structure 55
3.5.1.2 Thermal Structure in the Condensed Phase 57
3.5.1.3 Thermal Structure in the Gas Phase 59
3.5.1.4 Burning Rate Model 61
3.5.2 Flame Stand-Off Distance 63
3.5.3 Burning Rate Characteristics of Energetic Materials 64
3.5.3.1 Pressure Exponent of Burning Rate 64
3.5.3.2 Temperature Sensitivity of Burning Rate 64
3.5.4 Analysis of Temperature Sensitivity of Burning Rate 65
4 Energetics of Propellants and Explosives 69
4.1 Crystalline Materials 69
4.1.1 Physicochemical Properties of Crystalline Materials 69
4.1.2 Perchlorates 70
4.1.2.1 Ammonium Perchlorate 71
4.1.2.2 Nitronium Perchlorate 72
4.1.2.3 Potassium Perchlorate 72
4.1.3 Nitrates 73
Table of Contents
VII
4.1.3.1 Ammonium Nitrate 73
4.1.3.2 Potassium Nitrate and Sodium Nitrate 74
4.1.3.3 Pentaerythrol Tetranitrate 74
4.1.3.4 Triaminoguanidine Nitrate 75
4.1.4 Nitro Compounds 75
4.1.5 Nitramines 75
4.2 Polymeric Materials 77
4.2.1 Physicochemical Properties of Polymeric Materials 77
4.2.2 Nitrate Esters 77
4.2.3 Inert Polymers 79
4.2.4 Azide Polymers 82
4.2.4.1 GAP 83
4.2.4.2 BAMO 84
4.3 Classification of Propellants and Explosives 86
4.4 Formulation of Propellants 89
4.5 Nitropolymer Propellants 90
4.5.1 Single-Base Propellants 90
4.5.2 Double-Base Propellants 91
4.5.2.1 NC-NG Propellants 91
4.5.2.2 NC-TMETN Propellants 93
4.5.2.3 Nitro-Azide Polymer Propellants 93
4.5.2.4 Chemical Materials of Double-Base Propellants 94
4.6 Composite Propellants 95
4.6.1 AP Composite Propellants 96
4.6.1.1 AP-HTPB Propellants 96
4.6.1.2 AP-GAP Propellants 98
4.6.1.3 Chemical Materials of AP Composite Propellants 98
4.6.2 AN Composite Propellants 99
4.6.3 Nitramine Composite Propellants 100
4.6.4 HNF Composite Propellants 102
4.6.5 TAGN Composite Propellants 103
4.7 Composite-Modified Double-Base Propellants 104
4.7.1 AP-CMDB Propellants 104
4.7.2 Nitramine CMDB Propellants 105
4.7.3 Triple-Base Propellants 106
4.8 Black Powder 107
4.9 Formulation of Explosives 108
4.9.1 Industrial Explosives 109
4.9.1.1 ANFO Explosives 109
4.9.1.2 Slurry Explosives 109
4.9.2 Military Explosives 110
4.9.2.1 TNT-Based Explosives 110
4.9.2.2 Plastic-Bonded Explosives 110
Table of Contents
VIII
5 Combustion of Crystalline and Polymeric Materials 113
5.1 Combustion of Crystalline Materials 113
5.1.1 Ammonium Perchlorate (AP) 113
5.1.1.1 Thermal Decomposition 113
5.1.1.2 Burning Rate 114
5.1.1.3 Combustion Wave Structure 115
5.1.2 Ammonium Nitrate (AN) 115
5.1.2.1 Thermal Decomposition 115
5.1.3 HMX 116
5.1.3.1 Thermal Decomposition 116
5.1.3.2 Burning Rate 116
5.1.3.3 Gas-Phase Reaction 117
5.1.3.4 Combustion Wave Structure and Heat Transfer 118
5.1.4 Triaminoguanidine Nitrate (TAGN) 119
5.1.4.1 Thermal Decomposition 119
5.1.4.2 Burning Rate 123
5.1.4.3 Combustion Wave Structure and Heat Transfer 123
5.1.5 ADN (Ammonium Dinitramide) 125
5.1.6 HNF (Hydrazinium Nitroformate) 126
5.2 Combustion of Polymeric Materials 127
5.2.1 Nitrate Esters 127
5.2.1.1 Decomposition of Methyl Nitrate 128
5.2.1.2 Decomposition of Ethyl Nitrate 128
5.2.1.3 Overall Decomposition Process of Nitrate Esters 129
5.2.1.4 Gas-Phase Reactions of NO2 and NO 129
5.2.2 Glycidyl Azide Polymer (GAP) 131
5.2.2.1 Thermal Decomposition and Burning Rate 131
5.2.2.2 Combustion Wave Structure 133
5.2.3 Bis-azide methyl oxetane (BAMO) 134
5.2.3.1 Thermal Decomposition and Burning Rate 134
5.2.3.2 Combustion Wave Structure and Heat Transfer 137
6 Combustion of Double-Base Propellants 143
6.1 Combustion of NC-NG Propellants 143
6.1.1 Burning Rate Characteristics 143
6.1.2 Combustion Wave Structure 144
6.1.3 Burning Rate Model 148
6.1.3.1 Model for Heat Feedback from the Gas Phase to the Condensed
Phase 148
6.1.3.2 Burning Rate Calculated by a Simplified Gas-Phase Model 149
6.1.4 Energetics of the Gas Phase and Burning Rate 150
6.1.5 Temperature Sensitivity of Burning Rate 156
6.2 Combustion of NC-TMETN Propellants 158
6.2.1 Burning Rate Characteristics 158
6.2.2 Combustion Wave Structure 160
6.3 Combustion of Nitro-Azide Propellants 160
Table of Contents
IX
6.3.1 Burning Rate Characteristics 160
6.3.2 Combustion Wave Structure 160
6.4 Catalyzed Double-Base Propellants 162
6.4.1 Super-Rate, Plateau, and Mesa Burning 162
6.4.2 Effects of Lead Catalysts 164
6.4.2.1 Burning Rate Behavior of Catalyzed Liquid Nitrate Esters 164
6.4.2.2 Effect of Lead Compounds on Gas-Phase Reactions 164
6.4.3 Combustion of Catalyzed Double-Base Propellants 165
6.4.3.1 Burning Rate Characteristics 165
6.4.3.2 Reaction Mechanism in the Dark Zone 169
6.4.3.3 Reaction Mechanism in the Fizz Zone Structure 170
6.4.4 Combustion Models of Super-Rate, Plateau, and Mesa Burning 171
6.4.5 LiF-Catalyzed Double-Base Propellants 173
6.4.6 Ni-Catalyzed Double-Base Propellants 175
6.4.7 Suppression of Super-Rate and Plateau Burning 177
7 Combustion of Composite Propellants 181
7.1 AP Composite Propellants 181
7.1.1 Combustion Wave Structure 181
7.1.1.1 Premixed Flame of AP Particles and Diffusion Flame 181
7.1.1.2 Combustion Wave Structure of Oxidizer-Rich AP Propellants 185
7.1.2 Burning Rate Characteristics 189
7.1.2.1 Effect of AP Particle Size 189
7.1.2.2 Effect of the Binder 189
7.1.2.3 Temperature Sensitivity 192
7.1.3 Catalyzed AP Composite Propellants 194
7.1.3.1 Positive Catalysts 195
7.1.3.2 LiF Negative Catalyst 197
7.1.3.3 SrCO3 Negative Catalyst 200
7.2 Nitramine Composite Propellants 203
7.2.1 Burning Rate Characteristics 203
7.2.1.1 Effect of Nitramine Particle Size 203
7.2.1.2 Effect of Binder 203
7.2.2 Combustion Wave Structure 204
7.2.3 HMX-GAP Propellants 207
7.2.3.1 Physicochemical Properties of Propellants 207
7.2.3.2 Burning Rate and Combustion Wave Structure 207
7.2.4 Catalyzed Nitramine Composite Propellants 210
7.2.4.1 Super-Rate Burning of HMX Composite Propellants 210
7.2.4.2 Super-Rate Burning of HMX-GAP Propellants 211
7.2.4.3 LiF Catalysts for Super-Rate Burning 213
7.2.4.4 Catalyst Action of LiF on Combustion Wave 215
7.3 AP-Nitramine Composite Propellants 217
7.3.1 Theoretical Performance 217
7.3.2 Burning Rate 219
7.3.2.1 Effects of AP/RDX Mixture Ratio and Particle Size 219
Table of Contents
X
7.3.2.2 Effect of Binder 221
7.4 TAGN-GAP Composite Propellants 223
7.4.1 Physicochemical Characteristics 223
7.4.2 Burning Rate and Combustion Wave Structure 224
7.5 AN-Azide Polymer Composite Propellants 225
7.5.1 AN-GAP Composite Propellants 225
7.5.2 AN-(BAMO-AMMO)-HMX Composite Propellants 227
7.6 AP-GAP Composite Propellants 228
7.7 ADN , HNF, and HNIW Composite Propellants 230
8 Combustion of CMDB Propellants 235
8.1 Characteristics of CMDB Propellants 235
8.2 AP-CMDB Propellants 235
8.2.1 Flame Structure and Combustion Mode 235
8.2.2 Burning Rate Models 237
8.3 Nitramine-CMDB Propellants 239
8.3.1 Flame Structure and Combustion Mode 239
8.3.2 Burning Rate Characteristics 242
8.3.3 Thermal Wave Structure 243
8.3.4 Burning Rate Model 248
8.4 Plateau Burning of Catalyzed HMX-CMDB Propellants 249
8.4.1 Burning Rate Characteristics 249
8.4.2 Combustion Wave Structure 250
8.4.2.1 Flame Stand-off Distance 250
8.4.2.2 Catalyst Activity 252
8.4.2.3 Heat Transfer at the Burning Surface 253
9 Combustion of Explosives 257
9.1 Detonation Characteristics 257
9.1.1 Detonation Velocity and Pressure 257
9.1.2 Estimation of Detonation Velocity of CHNO Explosives 258
9.1.3 Equation of State for Detonation of Explosives 259
9.2 Density and Detonation Velocity 260
9.2.1 Energetic Explosive Materials 260
9.2.2 Industrial Explosives 261
9.2.2.1 ANFO Explosives 262
9.2.2.2 Slurry and Emulsion Explosives 262
9.2.3 Military Explosives 263
9.2.3.1 TNT-Based Explosives 263
9.2.3.2 Plastic-Bonded Explosives 264
9.3 Critical Diameter 265
9.4 Applications of Detonation Phenomena 265
9.4.1 Formation of a Flat Detonation Wave 265
9.4.2 Munroe Effect 267
9.4.3 Hopkinnson Effect 269
9.4.4 Underwater Explosion 270
Table of Contents
XI
10 Formation of Energetic Pyrolants 273
10.1 Differentiation of Propellants, Explosives, and Pyrolants 273
10.1.1 Thermodynamic Energy of Pyrolants 274
10.1.2 Thermodynamic Properties 275
10.2 Energetics of Pyrolants 276
10.2.1 Reactants and Products 276
10.2.2 Generation of Heat and Products 277
10.3 Energetics of Elements 278
10.3.1 Physicochemical Properties of Elements 278
10.3.2 Heats of Combustion of Elements 280
10.4 Selection Criteria of Chemicals 283
10.4.1 Characteristics of Pyrolants 283
10.4.2 Physicochemical Properties of Pyrolants 284
10.4.3 Formulations of Pyrolants 286
10.5 Oxidizer Components 289
10.5.1 Metallic Crystalline Oxidizers 290
10.5.1.1 Potassium Nitrate 290
10.5.1.2 Potassium Perchlorate 291
10.5.1.3 Potassium Chlorate 291
10.5.1.4 Barium Nitrate 291
10.5.1.5 Barium Chlorate 291
10.5.1.6 Strontium Nitrate 292
10.5.1.7 Sodium Nitrate 292
10.5.2 Metallic Oxides 292
10.5.3 Metallic Sulfides 293
10.5.4 Fluorine Compounds 293
10.6 Fuel Components 294
10.6.1 Metallic Fuels 294
10.6.2 Non-metallic Solid Fuels 296
10.6.2.1 Boron 296
10.6.2.2 Carbon 297
10.6.2.3 Silicon 297
10.6.2.4 Sulfur 297
10.6.3 Polymeric Fuels 298
10.6.3.1 Nitropolymers 298
10.6.3.2 Polymeric Azides 298
10.6.3.3 Hydrocarbon Polymers 298
10.7 Metal Azides 299
11 Combustion Propagation of Pyrolants 301
11.1 Physicochemical Structures of Combustion Waves 301
11.1.1 Thermal Decomposition and Heat Release Process 301
11.1.2 Homogeneous Pyrolants 302
11.1.3 Heterogeneous Pyrolants 302
11.1.4 Pyrolants as Igniters 303
11.2 Combustion of Metal Particles 304
Table of Contents
XII
11.2.1 Oxidation and Combustion Processes 305
11.2.1.1 Aluminum Particles 305
11.2.1.2 Magnesium Particles 305
11.2.1.3 Boron Particles 306
11.2.1.4 Zirconium Particles 306
11.3 Black Powder 306
11.3.1 Physicochemical Properties 306
11.3.2 Reaction Process and Burning Rate 307
11.4 Li-SF6 Pyrolants 307
11.4.1 Reactivity of Lithium 307
11.4.2 Chemical Characteristics of SF6 307
11.5 Zr Pyrolants 308
11.5.1 Reactivity with BaCrO4 308
11.5.2 Reactivity with Fe2O3 309
11.6 Mg-Tf Pyrolants 309
11.6.1 Thermochemical Properties and Energetics 309
11.6.2 Reactivity of Mg and Tf 311
11.6.3 Burning Rate Characteristics 311
11.6.4 Combustion Wave Structure 314
11.7 B-KNO3 Pyrolants 315
11.7.1 Thermochemical Properties and Energetics 315
11.7.2 Burning Rate Characteristics 316
11.8 Ti-KNO3 and Zr-KNO3 Pyrolants 317
11.8.1 Oxidation Process 317
11.8.2 Burning Rate Characteristics 318
11.9 Metal-GAP Pyrolants 318
11.9.1 Flame Temperature and Combustion Products 318
11.9.2 Thermal Decomposition Process 319
11.9.3 Burning Rate Characteristics 319
11.10 Ti-C Pyrolants 320
11.10.1 Thermochemical Properties of Titanium and Carbon 320
11.10.2 Reactivity of Tf with Ti-C Pyrolants 321
11.10.3 Burning Rate Characteristics 321
11.11 NaN3 Pyrolants 322
11.11.1 Thermochemical Properties of NaN3 Pyrolants 322
11.11.2 NaN3 Pyrolant Formulations 322
11.11.3 Burning Rate Characteristics 323
11.11.4 Combustion Residue Analysis 324
11.12 GAP-AN Pyrolants 324
11.12.1 Thermochemical Characteristics 324
11.12.2 Burning Rate Characteristics 324
11.12.3 Combustion Wave Structure and Heat Transfer 325
11.13 Nitramine Pyrolants 325
11.13.1 Physicochemical Properties 325
11.13.2 Combustion Wave Structures 325
11.14 B-AP Pyrolants 326
Table of Contents
XIII
11.14.1 Thermochemical Characteristics 326
11.14.2 Burning Rate Characteristics 327
11.14.3 Burning Rate Analysis 329
11.14.4 Site and Mode of Boron Combustion in the Combustion Wave 331
11.15 Friction Sensitivity of Pyrolants 332
11.15.1 Definition of Friction Energy 332
11.15.2 Effect of Organic Iron and Boron Compounds 332
12 Emission from Combustion Products 337
12.1 Fundamentals of Light Emission 337
12.1.1 Nature of Light Emission 337
12.1.2 Black-Body Radiation 338
12.1.3 Emission and Absorption by Gases 339
12.2 Light Emission from Flames 340
12.2.1 Emission from Gaseous Flames 340
12.2.2 Continuous Emission from Hot Particles 341
12.2.3 Colored Light Emitters 341
12.3 Smoke Emission 342
12.3.1 Physical Smoke and Chemical Smoke 342
12.3.2 White Smoke Emitters 343
12.3.3 Black Smoke Emitters 344
12.4 Smokeless Pyrolants 344
12.4.1 Nitropolymer Pyrolants 344
12.4.2 Ammonium Nitrate Pyrolants 345
12.5 Smoke Characteristics of Pyrolants 346
12.6 Smoke and Flame Characteristics of Rocket Motors 352
12.6.1 Smokeless and Reduced Smoke 352
12.6.2 Suppression of Rocket Plume 354
12.6.2.1 Effect of Chemical Reaction Suppression 355
12.6.2.2 Effect of Nozzle Expansion 358
12.7 HCl Reduction from AP Propellants 360
12.7.1 Background of HCl Reduction 360
12.7.2 Reduction of HCl by the Formation of Metal Chlorides 361
12.8 Reduction of Infrared Emission from Combustion Products 363
13 Transient Combustion of Propellants and Pyrolants 367
13.1 Ignition Transient 367
13.1.1 Convective and Conductive Ignition 367
13.1.2 Radiative Ignition 369
13.2 Ignition for Combustion 370
13.2.1 Description of the Ignition Process 370
13.2.2 Ignition Process 372
13.3 Erosive Burning Phenomena 374
13.3.1 Threshold Velocity 374
13.3.2 Effect of Cross-Flow 376
13.3.3 Heat Transfer through a Boundary Layer 376
Table of Contents
XIV
13.3.4 Determination of Lenoir−Robilard Parameters 378
13.4 Combustion Instability 380
13.4.1 T* Combustion Instability 380
13.4.2 L* Combustion Instability 383
13.4.3 Acoustic Combustion Instability 386
13.4.3.1 Nature of Oscillatory Combustion 386
13.4.3.2 Combustion Instability Test 387
13.4.3.3 Model for Suppression of Combustion Instability 395
13.5 Combustion under Acceleration 396
13.5.1 Burning Rate Augmentation 396
13.5.2 Effect of Aluminum Particles 397
13.6 Wired Propellant Burning 398
13.6.1 Heat-Transfer Process 398
13.6.2 Burning Rate Augmentation 400
14 Rocket Thrust Modulation 405
14.1 Combustion Phenomena in a Rocket Motor 405
14.1.1 Thrust and Burning Time 405
14.1.2 Combustion Efficiency in a Rocket Motor 407
14.1.3 Stability Criteria for a Rocket Motor 410
14.1.4 Temperature Sensitivity of Pressure in a Rocket Motor 412
14.2 Dual-Thrust Motor 414
14.2.1 Principles of a Dual-Thrust Motor 414
14.2.2 Single-Grain Dual-Thrust Motor 414
14.2.3 Dual-Grain Dual-Thrust Motor 417
14.2.3.1 Mass Generation Rate and Mass Discharge Rate 417
14.2.3.2 Determination of Design Parameters 418
14.3 Thrust Modulator 421
14.4 Erosive Burning in a Rocket Motor 421
14.4.1 Head-End Pressure 421
14.4.2 Determination of Erosive Burning Effect 423
14.5 Nozzleless Rocket Motor 426
14.5.1 Principles of the Nozzleless Rocket Motor 426
14.5.2 Flow Characteristics in a Nozzleless Rocket 427
14.5.3 Combustion Performance Analysis 429
14.6 Gas-Hybrid Rockets 430
14.6.1 Principles of the Gas-Hybrid Rocket 430
14.6.2 Thrust and Combustion Pressure 432
14.6.3 Pyrolants used as Gas Generators 433
15 Ducted Rocket Propulsion 439
15.1 Fundamentals of Ducted Rocket Propulsion 439
15.1.1 Solid Rockets, Liquid Ramjets, and Ducted Rockets 439
15.1.2 Structure and Operational Process 440
15.2 Design Parameters of Ducted Rockets 441
15.2.1 Thrust and Drag 441
Table of Contents
XV
15.2.2 Determination of Design Parameters 442
15.2.3 Optimum Flight Envelope 444
15.2.4 Specific Impulse of Flight Mach Number 444
15.3 Performance Analysis of Ducted Rockets 445
15.3.1 Fuel-Flow System 445
15.3.1.1 Non-Choked Fuel-Flow System 446
15.3.1.2 Fixed Fuel-Flow System 446
15.3.1.3 Variable Fuel-Flow System 447
15.4 Principle of the Variable Fuel-Flow Ducted Rocket 447
15.4.1 Optimization of Energy Conversion 447
15.4.2 Control of Fuel-Flow Rate 447
15.5 Energetics of Gas-Generating Pyrolants 450
15.5.1 Required Physicochemical Properties 450
15.5.2 Burning Rate Characteristics of Gas-Generating Pyrolants 451
15.5.2.1 Burning Rate and Pressure Exponent 451
15.5.2.2 Wired Gas-Generating Pyrolants 452
15.5.3 Pyrolants for Variable Fuel-Flow Ducted Rockets 453
15.5.4 GAP Pyrolants 453
15.5.5 Metal Particles as Fuel Components 455
15.5.6 GAP-B Pyrolants 456
15.5.7 AP Composite Pyrolants 458
15.5.8 Effect of Metal Particles on Combustion Stability 458
15.6 Combustion Tests for Ducted Rockets 459
15.6.1 Combustion Test Facility 459
15.6.2 Combustion of Variable-Flow Gas Generator 460
15.6.3 Combustion Efficiency of Multi-Port Air-Intake 464
Appendix A 469
List of Abbreviations of Energetic Materials 469
Appendix B 471
Mass and Heat Transfer in a Combustion Wave 471
B.1 Conservation Equations at a Steady State in a One-Dimensional Flow
Field 472
B.1.1 Mass Conservation Equation 472
B.1.2 Momentum Conservation Equation 472
B.1.3 Energy Conservation Equation 473
B.1.4 Conservation Equations of Chemical Species 474
B.2 Generalized Conservation Equations at a Steady-State in a Flow
Field 475
Appendix C 477
Shock Wave Propagation in a Two-Dimensional Flow Field 477
C.1 Oblique Shock Wave 477
C.2 Expansion Wave 481
C.3 Diamond Shock Wave 481
Table of Contents
XVI
Appendix D Supersonic Air-Intake 483
D.1 Compression Characteristics of Diffusers 483
D.1.1 Principles of a Diffuser 483
D.1.2 Pressure Recovery 485
D.2 Air-Intake System 487
D.2.1 External Compression System 487
D.2.2 Internal Compression System 487
D.2.3 Air-Intake Design 488
Appendix E Measurements of Burning Rate and Combustion Wave
Structure 491
Index 493
回复此楼

» 本帖附件资源列表

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
2015-02-01 15:22   回复  
五星好评  顶一下,感谢分享!
cryohuang3楼
2015-02-03 07:59   回复  
五星好评  顶一下,感谢分享!
262423zxw4楼
2015-03-14 01:08   回复  
五星好评  顶一下,感谢分享!
2015-03-19 19:40   回复  
五星好评  顶一下,感谢分享!
wangwenju6楼
2015-03-20 15:24   回复  
五星好评  顶一下,感谢分享!
2015-08-19 00:03   回复  
五星好评  顶一下,感谢分享!
2015-12-03 16:38   回复  
五星好评  顶一下,感谢分享!
mechtest9楼
2015-12-03 17:12   回复  
五星好评  顶一下,感谢分享!
2016-06-16 17:23   回复  
五星好评  顶一下,感谢分享!
mechtest11楼
2016-06-17 12:56   回复  
顶一下,感谢分享!
R2BBr12楼
2016-06-18 02:22   回复  
五星好评  顶一下,感谢分享!
143261356013楼
2016-06-26 09:08   回复  
五星好评  顶一下,感谢分享!
atlas041214楼
2016-10-23 10:49   回复  
五星好评  顶一下,感谢分享!
100406954415楼
2020-11-10 15:37   回复  
五星好评  顶一下,感谢分享!
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
最具人气热帖推荐 [查看全部] 作者 回/看 最后发表
[基金申请] 最新消息:2024国自然下载文件名变了 +9 dream200606 2024-06-16 12/600 2024-06-17 00:34 by kobe0107
[考博] 这个博士要读吗 +4 Sea Breeze 2024-06-16 6/300 2024-06-17 00:03 by 书路互辅
[硕博家园] 硕博巨婴,也许才刚刚开始 +30 SNaiL1995 2024-06-12 77/3850 2024-06-16 23:18 by 欢喜1998
[找工作] 江西双非一本和四川双一流高校如何选择? 5+8 寒山敲钟 2024-06-12 25/1250 2024-06-16 22:05 by zhaojiang427
[考博] 34岁读博士晚吗 +27 emitdne 2024-06-13 27/1350 2024-06-16 18:57 by yugege2009
[教师之家] 请问事业编制和年薪制冲突吗? +8 ZHONGWU_U 2024-06-14 8/400 2024-06-16 17:37 by spj860iuy
[基金申请] 面青地会评时间 +6 tanjydd 2024-06-15 6/300 2024-06-16 15:42 by 我是王小帅
[教师之家] 每次骚扰女学生的都是院系领导,而不是普通教师,小编们要注意措辞正确 +9 zju2000 2024-06-15 11/550 2024-06-16 14:49 by appleapple2
[基金申请] 希望今年自己国自然面上项目和老婆青年项目能中! +7 恐龙爸爸 2024-06-14 7/350 2024-06-16 14:48 by redfish105
[论文投稿] 编辑是什么意思 15+3 s090604054 2024-06-15 3/150 2024-06-16 10:29 by bobvan
[论文投稿] 二审返修送审10天了,原来一审的3个审稿人只有2个接受了审稿,会邀请新审稿人么? 50+3 huanpo116 2024-06-15 5/250 2024-06-16 10:27 by bobvan
[博后之家] 山东大学(青岛)“天然药物生物智造”课题组 招聘“博士后”(年薪20.4-55.6万元) +5 第二种态度 2024-06-11 8/400 2024-06-16 10:14 by 午睡未进行
[找工作] 成都产品质量检测研究院 200+3 鲸鱼663 2024-06-11 9/450 2024-06-16 10:08 by SNaiL1995
[基金申请] BO4的YQ答辩通知发布了吗? +6 博学笃行 2024-06-11 6/300 2024-06-15 16:04 by 悲催科研狗
[论文投稿] 投稿时忘记修改一作 +7 gll123456 2024-06-13 11/550 2024-06-15 11:49 by gll123456
[基金申请] 博士后基金需要结题吗? +8 zhouchuck 2024-06-13 8/400 2024-06-14 17:27 by liuyupu132
[基金申请] 工材E10口函评结束了吗 10+3 我1的飞翔 2024-06-13 5/250 2024-06-14 06:35 by nono2009
[有机交流] 原料反应完了,怎么知道是产物还是中间体 +6 小胡在努力 2024-06-11 8/400 2024-06-13 13:33 by 091602
[论文投稿] with editor日期变更 +3 慎独的小花卷 2024-06-12 8/400 2024-06-13 11:00 by 慎独的小花卷
[论文投稿] water research状态咨询 5+3 Flyyawa 2024-06-10 6/300 2024-06-11 09:45 by bobvan
信息提示
请填处理意见