| 查看: 1808 | 回复: 31 | ||||
| 【奖励】 本帖被评价26次,作者pkusiyuan增加金币 20.6 个 | ||||
[资源]
Introduction.to.Real.Analysis
|
||||
|
CHAPTER 1 PRELIMINARIES 1 1.1 Sets and Functions 1 1.2 Mathematical Induction 12 1.3 Finite and Infinite Sets 16 CHAPTER 2 THE REAL NUMBERS 23 2.1 The Algebraic and Order Properties of R 23 2.2 Absolute Value and the Real Line 32 2.3 The Completeness Property of R 36 2.4 Applications of the Supremum Property 40 2.5 Intervals 46 CHAPTER 3 SEQUENCES AND SERIES 54 3.1 Sequences and Their Limits 55 3.2 Limit Theorems 63 3.3 Monotone Sequences 70 3.4 Subsequences and the Bolzano-Weierstrass Theorem 78 3.5 The Cauchy Criterion 85 3.6 Properly Divergent Sequences 91 3.7 Introduction to Infinite Series 94 CHAPTER 4 LIMITS 102 4.1 Limits of Functions 103 4.2 Limit Theorems 111 4.3 Some Extensions of the Limit Concept 116 CHAPTER 5 CONTINUOUS FUNCTIONS 124 5.1 Continuous Functions 125 5.2 Combinations of Continuous Functions 130 5.3 Continuous Functions on Intervals 134 5.4 Uniform Continuity 141 5.5 Continuity and Gauges 149 5.6 Monotone and Inverse Functions 153 xi CHAPTER 6 DIFFERENTIATION 161 6.1 The Derivative 162 6.2 The Mean Value Theorem 172 6.3 L’Hospital’s Rules 180 6.4 Taylor’s Theorem 188 CHAPTER 7 THE RIEMANN INTEGRAL 198 7.1 Riemann Integral 199 7.2 Riemann Integrable Functions 208 7.3 The Fundamental Theorem 216 7.4 The Darboux Integral 225 7.5 Approximate Integration 233 CHAPTER 8 SEQUENCES OF FUNCTIONS 241 8.1 Pointwise and Uniform Convergence 241 8.2 Interchange of Limits 247 8.3 The Exponential and Logarithmic Functions 253 8.4 The Trigonometric Functions 260 CHAPTER 9 INFINITE SERIES 267 9.1 Absolute Convergence 267 9.2 Tests for Absolute Convergence 270 9.3 Tests for Nonabsolute Convergence 277 9.4 Series of Functions 281 CHAPTER 10 THE GENERALIZED RIEMANN INTEGRAL 288 10.1 Definition and Main Properties 289 10.2 Improper and Lebesgue Integrals 302 10.3 Infinite Intervals 308 10.4 Convergence Theorems 315 CHAPTER 11 A GLIMPSE INTO TOPOLOGY 326 11.1 Open and Closed Sets in R 326 11.2 Compact Sets 333 11.3 Continuous Functions 337 11.4 Metric Spaces 341 APPENDIX A LOGIC AND PROOFS 348 APPENDIX B FINITE AND COUNTABLE SETS 357 xii CONTENTS APPENDIX C THE RIEMANN AND LEBESGUE CRITERIA 360 APPENDIX D APPROXIMATE INTEGRATION 364 APPENDIX E TWO EXAMPLES 367 REFERENCES 370 PHOTO CREDITS 371 HINTS FOR SELECTED EXERCISES 372 INDEX 395 CONTENTS xiii |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Introduction.to.Real.Analysis,.Robert.G..Bartle,.Donald.R..Sherbert,.4ed,.Wiley,.2011.pdf
2015-05-02 20:11:15, 9.18 M
» 收录本帖的淘帖专辑推荐
数学分析 | 办公技巧和电源管理 |
» 猜你喜欢
职称评审没过,求安慰
已经有50人回复
26申博自荐
已经有3人回复
A期刊撤稿
已经有4人回复
垃圾破二本职称评审标准
已经有17人回复
投稿Elsevier的Neoplasia杂志,到最后选publishing options时页面空白,不能完成投稿
已经有22人回复
EST投稿状态问题
已经有7人回复
毕业后当辅导员了,天天各种学生超烦
已经有4人回复
三无产品还有机会吗
已经有6人回复
» 本主题相关价值贴推荐,对您同样有帮助:
Principles of Soft-Matter Dynamics
已经有92人回复
Multiscale Finite Element Methods Theory And Applications
已经有63人回复
流形的一些书籍资料【转载】
已经有90人回复
第一次投SCI,被拒,审稿意见求点评
已经有5人回复
wiley 2012 “固体材料和非均相催化剂表征” 原版两卷全,高清pdf版
已经有13人回复
美国大学数学研究生基础课程参考书目
已经有7人回复
【英美经典教材】《Statistical Methods in Analytical Chemistry》【已搜无重复】
已经有206人回复
Nonlinear Dynamics 投稿出现问题
已经有26人回复
hylpy
专家顾问 (知名作家)
-

专家经验: +2500 - 数学EPI: 7
- 应助: 381 (硕士)
- 贵宾: 0.167
- 金币: 51117.4
- 帖子: 5093
- 在线: 1102.4小时
- 虫号: 3247778
4楼2015-05-02 22:38:09
9楼2015-05-04 00:20:54
11楼2015-05-04 10:45:34
21楼2016-03-14 14:57:25
31楼2019-05-16 23:05:06
简单回复
2015-05-02 21:42
回复
五星好评 顶一下,感谢分享!
hylpy3楼
2015-05-02 22:37
回复
五星好评 顶一下,感谢分享!
askuyue5楼
2015-05-03 00:40
回复
五星好评 顶一下,感谢分享!
jml5066楼
2015-05-03 07:15
回复
五星好评 顶一下,感谢分享!
2015-05-03 09:04
回复
五星好评 顶一下,感谢分享!
2015-05-03 21:18
回复
五星好评 顶一下,感谢分享!
happyfishs10楼
2015-05-04 09:46
回复
五星好评 顶一下,感谢分享!
truebelief12楼
2015-05-04 11:30
回复
五星好评 顶一下,感谢分享!
daduan13楼
2015-05-04 12:20
回复
五星好评 顶一下,感谢分享!
lantianbihb14楼
2015-05-13 17:28
回复
五星好评 顶一下,感谢分享!
wangtalen15楼
2015-06-16 15:24
回复
五星好评 顶一下,感谢分享!
75287929016楼
2015-06-16 15:57
回复
顶一下,感谢分享!
asmeng17楼
2015-07-13 15:34
回复
五星好评 顶一下,感谢分享!
玄念18楼
2015-07-13 18:07
回复
五星好评 顶一下,感谢分享!
guli052019楼
2015-09-23 15:39
回复
五星好评 顶一下,感谢分享!
trcank20楼
2016-01-20 13:59
回复
五星好评 顶一下,感谢分享!
tryhard22楼
2016-03-23 21:17
回复
五星好评 顶一下,感谢分享!
jml50623楼
2016-03-24 20:28
回复
顶一下,感谢分享!
shxch198724楼
2016-05-06 15:39
回复
五星好评 顶一下,感谢分享!
shangguocan25楼
2016-05-06 23:13
回复
gaixiaotao26楼
2017-01-02 13:16
回复
五星好评 顶一下,感谢分享!
shangren550427楼
2017-01-21 16:53
回复
五星好评 顶一下,感谢分享!
NOSURE28楼
2017-01-24 19:26
回复
五星好评 顶一下,感谢分享!
zhaozilai29楼
2017-01-28 12:22
回复
五星好评 顶一下,感谢分享!
shxch198730楼
2018-08-27 19:49
回复
顶一下,感谢分享!
guorenyong32楼
2019-08-23 17:46
回复
五星好评 顶一下,感谢分享!













回复此楼