| 查看: 3757 | 回复: 92 | |||||||||
| 【奖励】 本帖被评价78次,作者touchhappy增加金币 62.2 个 | |||||||||
[资源]
Principles of Soft-Matter Dynamics
|
|||||||||
|
Principles of Soft-Matter Dynamics-----Basic Theories, Non-invasive Methods,Mesoscopic Aspects ====================================================================================== Practical applications of soft-matter dynamics are of vital importance in material science, chemical engineering, biophysics and biotechnology, food processing, plastic industry, micro- and nano-system technology, and other technologies based on non-crystalline and non-glassy materials. Principles of Soft-Matter Dynamics. Basic Theories, Non-invasive Methods, Mesoscopic Aspects covers fundamental dynamic phenomena such as diffusion, relaxation, fluid dynamics, normal modes, order fluctuations, adsorption and wetting processes. It also elucidates the applications of the principles and of the methods referring to polymers, liquid crystals and other mesophases, membranes, amphiphilic systems, networks, and porous media including multiphase and multi-component materials, colloids, fine-particles, and emulsions. The book presents all formalisms, examines the basic concepts needed for applications of soft-matter science, and reviews non-invasive experimental techniques such as the multi-faceted realm of NMR methods, neutron and light quasi-elastic scattering, mechanical relaxation and dielectric broadband spectroscopy which are treated and compared on a common and consistent foundation. The standard concepts of dynamics in fluids, polymers, liquid crystals, colloids and adsorbates are comprehensively derived in a step-by-step manner. Principles and analogies common to diverse application fields are elucidated and theoretical and experimental aspects are supplemented by computational-physics considerations. Principles of Soft-Matter Dynamics. Basic Theories, Non-invasive Methods, Mesoscopic Aspects appeals to graduate and PhD students, post-docs, researchers, and industrial scientists alike. ====================================================================================== 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Correlation Functions as a Link Between Different Experimental Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Orientation Correlation Functions . . . . . . . . . . . . . . . . . . . 4 1.1.2 Dynamic Structure Factors . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Exponential Correlation Functions . . . . . . . . . . . . . . . . . . 8 1.1.4 The Long-Tail Detectability Problem . . . . . . . . . . . . . . . . 9 1.2 Linear-Response and the Fluctuation-Dissipation Theorem . . . . . . 10 1.3 A Word on Classical and Quantum-Mechanical Treatments . . . . . 12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Basic Phenomena and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Molecular and Particle Interactions on Length Scales from A ° to mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Coulomb Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.2 Van der Waals Attractions . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.3 Repulsive Interaction and Total Potential . . . . . . . . . . . . . 27 2.1.4 Hydrogen Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.5 Hydrophobic Interaction as an Entropic Force . . . . . . . . . . 29 2.1.6 From Molecular to Interfacial (“Casimir”) Interactions . . . 30 2.1.7 Depletion Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.8 Charged Surfaces and the Electric Double Layer . . . . . . . . 39 2.2 Remarks on Conservative Forces and Microreversibility . . . . . . . . 44 2.3 Stress, Strain, and Shear Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3.1 Stress and the Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . 46 2.3.2 Strain and the Strain Tensor . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.3 Elastic Moduli (Hookean Limit) . . . . . . . . . . . . . . . . . . . . 55 2.3.4 Viscosity and Shear Stress Tensor . . . . . . . . . . . . . . . . . . 60 2.4 From Newton’s Equation of Motion to the Langevin Equation . . . 65 2.4.1 Strategy for a Better Tractability . . . . . . . . . . . . . . . . . . . 67 2.4.2 Fluctuations of Intermolecular Forces . . . . . . . . . . . . . . . . 68 xi 2.4.3 Langevin Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.4.4 Velocity Correlation Function . . . . . . . . . . . . . . . . . . . . . 72 2.5 Brownian Motion, Self-Diffusion, Interdiffusion, and Rotational Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.5.1 Diffusion Equations and Propagators . . . . . . . . . . . . . . . . 74 2.5.2 Classification of Normal and Anomalous Diffusion . . . . . . 78 2.5.3 Rotational Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.5.4 The Stokes/Einstein Relations . . . . . . . . . . . . . . . . . . . . . 84 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3 Non-invasive methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1 Spin relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.1.1 General remarks and definitions . . . . . . . . . . . . . . . . . . . 91 3.1.2 Bloch equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.1.3 RF pulses, flip angle, and free-induction decay . . . . . . . . 100 3.1.4 Experiments for measuring spin relaxation times . . . . . . . 102 3.1.5 Bloch/Wangsness/Redfield theory of spin relaxation . . . . 117 3.1.6 Anderson/Weiss theory for transverse relaxation in the presence of residual spin couplings . . . . . . . . . . . . . . . . . 155 3.1.7 A first example of correlation functions: The isotropic rotational-diffusion model . . . . . . . . . . . . . . . . . . . . . . . 161 3.1.8 Quadrupole dips or peaks by cross-relaxation from dipole to quadrupole nuclei . . . . . . . . . . . . . . . . . . 174 3.1.9 Translational diffusion as dipolar or scalar spin relaxation mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 175 3.2 Field-gradient NMR diffusometry . . . . . . . . . . . . . . . . . . . . . . . 177 3.2.1 The principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 3.2.2 Field-gradient diffusometry with Hahn echo and stimulated-echo pulse sequences . . . . . . . . . . . . . . . 181 3.2.3 Spin echo attenuation by hydrodynamic dispersion . . . . . 190 3.3 NMR microscopy-based mapping techniques . . . . . . . . . . . . . . . 194 3.3.1 Spin-density diffusometry . . . . . . . . . . . . . . . . . . . . . . . 195 3.3.2 Mapping of self-diffusion coefficients . . . . . . . . . . . . . . . 202 3.3.3 Flow-velocity NMR mapping . . . . . . . . . . . . . . . . . . . . . 203 3.3.4 Flow-acceleration NMR mapping . . . . . . . . . . . . . . . . . . 205 3.3.5 Mapping of electric transport phenomena in electrolyte solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 206 3.3.6 Magnetization grid rotating-frame imaging (MAGROFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 3.4 Exchange NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 3.4.1 Equation of motion for discrete spin environments . . . . . 215 3.4.2 HMM solutions in terms of eigenvalues . . . . . . . . . . . . . 218 3.4.3 Two-site exchange model . . . . . . . . . . . . . . . . . . . . . . . . 220 3.4.4 Two-dimensional exchange spectroscopy . . . . . . . . . . . . 222 3.4.5 Two-dimensional spin relaxation and diffusion correlation maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 xii Contents 3.5 The dipolar-correlation effect . . . . . . . . . . . . . . . . . . . . . . . . . . 228 3.5.1 The residual dipolar coupling constant . . . . . . . . . . . . . . 230 3.5.2 Echo attenuation functions due to residual dipolar couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 3.5.3 The dipolar-correlation quotient . . . . . . . . . . . . . . . . . . . 238 3.5.4 The phase-shift correlation functions . . . . . . . . . . . . . . . 239 3.6 Quasi-elastic neutron scattering . . . . . . . . . . . . . . . . . . . . . . . . . 242 3.6.1 Overview and terminology . . . . . . . . . . . . . . . . . . . . . . . 243 3.6.2 The experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 3.6.3 Theory of the double-differential cross-section . . . . . . . . 248 3.6.4 Coherent and incoherent scattering . . . . . . . . . . . . . . . . . 257 3.6.5 Probing translational diffusion of molecules by incoherent scattering . . . . . . . . . . . . . . . . . . . . . . . . . 260 3.7 Dynamic light and X-ray scattering . . . . . . . . . . . . . . . . . . . . . . 262 3.7.1 The experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 3.7.2 Theory for dilute particle dispersions . . . . . . . . . . . . . . . 265 3.7.3 Derivation of the Siegert relation . . . . . . . . . . . . . . . . . . 269 3.8 Mechanical relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 3.8.1 Viscoelasticity and classification of experiments probing it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 3.8.2 Fundamental response functions for linear viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 3.8.3 Step relaxation experiments . . . . . . . . . . . . . . . . . . . . . . 275 3.8.4 Periodic relaxation experiments . . . . . . . . . . . . . . . . . . . 277 3.9 Dielectric relaxation spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 282 3.9.1 Some basic relations and definitions for stationary electric fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 3.9.2 Time-varying electric fields . . . . . . . . . . . . . . . . . . . . . . 286 3.9.3 Isotropic rotational diffusion of uncorrelated fluctuating dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 3.9.4 Defect diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 3.10 Comparison and discussion of dynamic ranges . . . . . . . . . . . . . . 295 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 4 Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 4.1 Compressible and Incompressible Fluids . . . . . . . . . . . . . . . . . . 307 4.2 Lagrangian and Eulerian Description of Coherent Flow . . . . . . . 308 4.3 Total, Local, and Convective Acceleration . . . . . . . . . . . . . . . . . 309 4.4 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 4.4.1 Navier/Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . . . 311 4.4.2 Euler Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 4.4.3 Bernoulli Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 4.4.4 Laplace Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 4.5 Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 4.6 Equation of Creeping Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 318 4.7 Stokes’ Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 Contents xiii 4.8 Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 323 4.8.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 4.8.2 Principles of Numerical CFD Methods . . . . . . . . . . . . . . 330 4.9 Transport Through Pipes, Pores, and Percolation Clusters: Theory, Simulations, and Experiments . . . . . . . . . . . . . . . . . . . . 334 4.9.1 Some Parameters Characterizing Porous Media . . . . . . . . 336 4.9.2 Laminar Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 4.9.3 Hydrodynamic Dispersion in Porous Media . . . . . . . . . . . 344 4.9.4 Heat Conduction and Thermal Convection . . . . . . . . . . . 349 4.9.5 Electroosmotic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 4.9.6 Ionic Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 5 Molecular Dynamics in Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 5.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 5.2 Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 5.2.1 Chain End-to-End Distance . . . . . . . . . . . . . . . . . . . . . . . 378 5.2.2 From the Valence-Angle Chain to the Freely Jointed Segment Chain . . . . . . . . . . . . . . . . . . . . . . . . . . 382 5.2.3 Random-Coil Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 385 5.2.4 Worm-Like Chain Model and Persistence Length . . . . . . . 392 5.2.5 The Real-World Polymer, Excluded-Volume Effect, and Y-Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 5.3 Elastic Modules of Permanent Polymer Networks . . . . . . . . . . . . 401 5.4 Dynamic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 5.4.1 Classification and Terminology . . . . . . . . . . . . . . . . . . . . 405 5.4.2 The Bead-and-Spring Model Chain . . . . . . . . . . . . . . . . . 411 5.4.3 Rouse Model (Freely Draining Polymer Chains) . . . . . . . . 416 5.4.4 The Renormalized Rouse Formalism (Entangled Polymer Chains) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 5.4.5 Harmonic Radial Tube Potential (Confined Polymer Chains) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 5.4.6 The Tube/Reptation Model . . . . . . . . . . . . . . . . . . . . . . . 468 5.4.7 Local Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488 5.4.8 Mesoscopic Confinement Effects on Polymer Chain Dynamics (“Corset Effect”) . . . . . . . . . . . . . . . . . . 490 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 6 Molecular and Collective Dynamics in Liquid Crystals and Other Mesophases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 6.1 Introductory Remarks: Collective Dynamics in Polymers and Liquid Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 6.2 Classification of Mesophase Order . . . . . . . . . . . . . . . . . . . . . . . 500 6.2.1 Ordering Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 502 6.2.2 Structural Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 6.2.3 Order Director and Order Parameter . . . . . . . . . . . . . . . . 504 6.2.4 Alignment in External Fields . . . . . . . . . . . . . . . . . . . . . 505 xiv Contents 6.3 Elasticity of Uniaxial Nematic Liquid Crystals . . . . . . . . . . . . . . 508 6.4 Order-Director Fluctuations in Nematic Liquid Crystals . . . . . . . 512 6.5 Spin–Lattice Relaxation Dispersion in Nematic Liquid Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 6.6 The Dipolar-Correlation Effect for Nematic Order-Director Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 6.7 Dynamic Light Scattering in Nematic Liquid Crystals . . . . . . . . 528 6.7.1 The Scattering Mechanism Dominating in Liquid Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 6.7.2 Eigenmodes of Order-Director Fluctuations for Different Frank Elastic Constants . . . . . . . . . . . . . . . 530 6.7.3 First- and Second-Order Correlation Functions . . . . . . . . 532 6.8 Spin Relaxation in Smectic Liquid Crystals and Lamellar Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534 6.8.1 Collective Fluctuations in Smectic Liquid Crystals . . . . . 534 6.8.2 Distinction of Local and Collective Molecular Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 6.8.3 Local Motions in the Alkane Chain Phase of Lipid Bilayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 6.8.4 Shape Fluctuations of Vesicles . . . . . . . . . . . . . . . . . . . . 539 6.9 Type D Mesophases of Poly(Dialkylsiloxanes) . . . . . . . . . . . . . . 545 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 7 Dynamics at Fluid Solid Interfaces: Porous Media and Colloidal Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 7.1 Survey and Some Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 7.1.1 Characterization of Pore Spaces . . . . . . . . . . . . . . . . . . . . 550 7.1.2 Adsorption Versus Restricted-Geometry Effects . . . . . . . . 552 7.1.3 Categories of Restricted-Geometry Effects on Translational Diffusion . . . . . . . . . . . . . . . . . . . . . . . . 552 7.1.4 Rotational Versus Translational Diffusion . . . . . . . . . . . . . 553 7.1.5 Fluid Phases and the Intricacy of the Term “Exchange” . . . 554 7.2 Exchange Limits for Two-Phase Systems . . . . . . . . . . . . . . . . . . 555 7.2.1 Exchange Limits Relative to Measuring Time Scales . . . . . 556 7.2.2 Exchange Limits Relative to the Time Scale of Orientation Correlation Functions . . . . . . . . . . . . . . . . . 557 7.2.3 Combined Limits for Spin Relaxation in “Two-Phase/Fast-Exchange Systems” . . . . . . . . . . . . . . 560 7.3 Adsorption Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562 7.4 Translational Diffusion of Low-Molecular Fluids Under Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 7.4.1 Fluids in Saturated Mesoscopic Pore Spaces . . . . . . . . . . . 565 7.4.2 Translational Diffusion in the Adsorbed Phase . . . . . . . . . 570 7.4.3 Single-File Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576 7.4.4 Diffusion Enhanced by a Coexisting Vapor Phase . . . . . . . 577 Contents xv 7.5 Reorientational Dynamics in Surface-Dominated Systems . . . . . . 589 7.5.1 From Translational to Rotational Diffusion . . . . . . . . . . . . 589 7.5.2 Spin–Lattice Relaxation in Low-Molecular Solvents Confined in Inorganic Porous Media . . . . . . . . . . . . . . . . . 590 7.5.3 Surface-Diffusion Formalism for Spin Relaxation in Fluids in the Strong-Adsorption Case . . . . . . . . . . . . . . 593 7.5.4 A First Test Experiment for the Surface-Diffusion Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599 7.5.5 Spin Relaxation in Aqueous Protein Solutions and Tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 7.5.6 Special Surface Topologies . . . . . . . . . . . . . . . . . . . . . . . 615 7.5.7 The NMR Flow-Relaxation Effect . . . . . . . . . . . . . . . . . . 627 7.5.8 Electron-Paramagnetic Surface Relaxation Sinks . . . . . . . . 633 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635 Glossary of Frequent Symbols, Units, Constants and Abbreviations . . . 639 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Principles_of_Soft-Matter_Dynamics.pdf
2014-10-21 10:58:41, 7.5 M
» 收录本帖的淘帖专辑推荐
我的文件——值得收藏 | 电化学&有机合成 | 专业书籍【直接下载】 | 高分子相关资料 |
材料 | 物理化学 | 功能复合材料F |
» 猜你喜欢
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有7人回复
申请2026年博士
已经有5人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有5人回复
寻求一种能扛住强氧化性腐蚀性的容器密封件
已经有6人回复
2025冷门绝学什么时候出结果
已经有7人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有6人回复
Bioresource Technology期刊,第一次返修的时候被退回好几次了
已经有7人回复
请问哪里可以有青B申请的本子可以借鉴一下。
已经有4人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
» 本主题相关价值贴推荐,对您同样有帮助:
Principles of Spread-Spectrum Communication Systems(第2版)
已经有25人回复
Principles and Applications of Tribology
已经有134人回复
《Principles and Applications of Ferroelectrics and Related Materials》
已经有132人回复
【专业学科】Solution to Lehninger Principles of Biochemistry(2004),Free
已经有62人回复
Principles of the Theory of Solids, J. M. Ziman, 2ed. (已搜索,无重复)
已经有262人回复
The Principles of Semiconductor Laser Diodes and Amplifiers
已经有27人回复
9楼2014-11-26 21:27:26
简单回复
2014-10-21 18:39
回复
五星好评
2014-10-22 08:06
回复
五星好评 顶一下,感谢分享!
2014-10-22 12:43
回复
五星好评 顶一下,感谢分享!
2014-10-23 21:35
回复
五星好评 顶一下,感谢分享!
2014-10-24 20:51
回复
五星好评 顶一下,感谢分享!
xuhu_117楼
2014-11-14 11:08
回复
五星好评 顶一下,感谢分享!
2014-11-14 14:15
回复
五星好评 顶一下,感谢分享!
huai10楼
2014-11-29 20:34
回复
五星好评 顶一下,感谢分享!
linyuanbin11楼
2014-11-30 07:01
回复
五星好评 顶一下,感谢分享!
史东林12楼
2014-11-30 12:40
回复
五星好评 顶一下,感谢分享!
wanghzh0713楼
2014-12-06 11:12
回复
五星好评 顶一下,感谢分享!
遗忘消失的灆14楼
2014-12-11 18:34
回复
五星好评 顶一下,感谢分享!
怕看烟火15楼
2015-01-04 12:48
回复
五星好评 顶一下,感谢分享!
june123416楼
2015-01-15 10:38
回复
五星好评 顶一下,感谢分享!
zeusisin17楼
2015-01-23 13:00
回复
五星好评 顶一下,感谢分享!
zhangxumin18楼
2015-01-25 13:20
回复
五星好评 顶一下,感谢分享!
biosensors19楼
2015-01-29 16:36
回复
五星好评 顶一下,感谢分享!
ebook66620楼
2015-02-06 20:10
回复
五星好评 顶一下,感谢分享!
史东林21楼
2015-02-12 10:37
回复
顶一下,感谢分享!
twistingcrys22楼
2015-02-16 19:33
回复
五星好评 顶一下,感谢分享!
runnyman23楼
2015-02-16 22:47
回复
五星好评 顶一下,感谢分享!
pys110624楼
2015-02-27 17:46
回复
五星好评 顶一下,感谢分享!
遗忘_的书页25楼
2015-03-03 09:56
回复
五星好评 顶一下,感谢分享!
史东林26楼
2015-03-10 16:51
回复
顶一下,感谢分享!
wang_come_on27楼
2015-03-14 13:35
回复
五星好评 顶一下,感谢分享!
macier28楼
2015-03-24 07:00
回复
五星好评 顶一下,感谢分享!
oilguy29楼
2015-03-27 20:27
回复
五星好评 顶一下,感谢分享!
mubiao_30楼
2015-03-31 13:24
回复
五星好评 顶一下,感谢分享!
星河31楼
2015-03-31 14:52
回复
五星好评 顶一下,感谢分享!
oilguy32楼
2015-04-07 23:10
回复
顶一下,感谢分享!
nuodao33楼
2015-04-20 09:10
回复
五星好评 顶一下,感谢分享!
happyfishs34楼
2015-05-05 16:13
回复
五星好评 顶一下,感谢分享!
xieyue120335楼
2015-05-26 11:07
回复
五星好评 顶一下,感谢分享!
butter12336楼
2015-06-03 14:32
回复
五星好评 顶一下,感谢分享!
Actor200637楼
2015-06-29 20:46
回复
五星好评 顶一下,感谢分享!
yuzhbt38楼
2015-07-19 11:15
回复
五星好评 顶一下,感谢分享!
云风-NYZ39楼
2015-08-03 22:40
回复
五星好评 顶一下,感谢分享!
hunantao40楼
2015-08-26 21:54
回复
五星好评 顶一下,感谢分享!
twb200841楼
2015-08-31 18:58
回复
五星好评 顶一下,感谢分享!
oilguy42楼
2015-09-06 22:40
回复
顶一下,感谢分享!
清池微澜43楼
2015-09-28 14:01
回复
五星好评 顶一下,感谢分享!
zndx200644楼
2015-10-25 10:35
回复
五星好评 顶一下,感谢分享!
ghf_52145楼
2015-11-06 00:03
回复
五星好评 顶一下,感谢分享!
yangjf46楼
2015-11-16 22:42
回复
五星好评 顶一下,感谢分享!
Runningbunny47楼
2015-11-18 14:48
回复
五星好评 顶一下,感谢分享!
tianwk48楼
2015-11-24 22:11
回复
五星好评 顶一下,感谢分享!
ridcifly49楼
2016-01-04 20:31
回复
五星好评 顶一下,感谢分享!
qphll50楼
2016-01-06 10:34
回复
五星好评 顶一下,感谢分享!













回复此楼
