| 查看: 6549 | 回复: 13 | |||||||||||
[交流]
wiley 2012 “固体材料和非均相催化剂表征” 原版两卷全,高清pdf版已有12人参与
|
|||||||||||
|
书名:Characterization of Solid Materials and Heterogeneous Catalysts - From Structure to Surface Reactivity (Volume 1 & 2) 作者:Michel Che and Jacques C. Védrine ISBN(Print): 978-3-527-32687-7 出版时间:2012 版权:Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany 链接:http://onlinelibrary.wiley.com/book/10.1002/9783527645329 目录: Volume 1 Part One Molecular/Local Spectroscopies 1 1 Infrared Spectroscopy 3 Frédéric Thibault-Starzyk and Françoise Maugé 1.1 Introduction 3 1.2 Principles of IR Spectroscopy and Basic Knowledge for Its Use 3 1.2.1 IR Light 3 1.2.2 Matter–Radiation Interaction 4 1.2.3 Spectrometry, Interferometry 4 1.2.4 Limitations of and Problems with the Fourier Transform 6 1.3 Experimental Considerations 7 1.3.1 Technical Aspects of the Fourier Transform 7 1.3.2 Practical Implementation 8 1.3.2.1 Transmission Experiments, Quantitative Aspects 8 1.3.2.2 Diffuse Reflection 9 1.4 Use of IR Spectroscopy to Characterize Solids 11 1.4.1 IR Spectrum and Structure of a Solid 11 1.4.1.1 The Example of Zeolites 11 1.4.1.2 Substitution of Metals in the Structure of Zeolites 13 1.4.2 Activation: Cleaning the Sample to Observe Surface Sites 13 1.4.2.1 Experimental Aspects 13 1.4.2.2 Activation – Cleaning the Sample to Observe Surface Sites 14 1.4.3 The Spectrum of OH Groups 17 1.4.3.1 OH Groups on Alumina 18 1.4.3.2 OH Groups in Zeolites 18 1.4.4 Characterization of Acidity with Probe Molecules 20 1.4.4.1 Brønsted Sites: Hydrogen Bonding and IR Spectroscopy 21 1.4.4.2 Molecular Probes for Lewis Acidity 24 1.4.4.3 Common Probe Molecules for Acidity 24 1.4.5 Characterization of Basicity with Probe Molecules 32 1.4.5.1 CO2 as a Probe for Basic Sites 32 1.4.5.2 Protic Molecules 33 1.4.5.3 Methanol 33 1.4.6 Probes for Supported Metal Catalysts 34 1.4.7 Probes for Sulfide Catalysts 36 1.4.8 Quantitative Analysis by Coupling IR Spectroscopy with Gravimetry 38 1.5 Application to Surface Reactivity: Operando Spectroscopy 39 1.5.1 Experimental Setup for Operando IR Spectroscopy and Reactions Conditions 40 1.5.2 Examples of Operando IR Measurements 40 1.6 Conclusion 45 References 45 2 Raman and UV-Raman Spectroscopies 49 Fengtao Fan, Zhaochi Feng, and Can Li 2.1 Introduction 49 2.1.1 Raman Spectroscopy 49 2.1.2 FT-Raman Spectroscopy 51 2.1.3 UV Raman Spectroscopy 53 2.1.4 Resonance Raman Spectroscopy 53 2.2 Characterization of Active Sites and Phase Structure ofMetal Oxides 55 2.2.1 Identification of the Active Species on Metal Oxides 55 2.2.2 Phase Transformation in the Surface Region of Metal Oxides 56 2.3 Characterization of Surface Metal Oxide Species on Supported Metal Oxides 59 2.4 Electron–Phonon Coupling in Nanostructured Materials 63 2.5 Characterization of sp2 Carbon Materials 64 2.6 Characterization of Transition Metal-Containing Microporous and Mesoporous Materials 67 2.6.1 Identification of the Isolated Quadrivalent Transition Metal Sites in Microporous and Mesoporous Materials 67 2.6.2 Identification of the Isolated Trivalent Transition Metal Sites in Microporous and Mesoporous Materials 69 2.6.3 Identification of Extra-Framework Active Sites in Microporous and Mesoporous Materials 71 2.7 Synthesis Mechanisms of Molecular Sieves 73 2.7.1 Assembling Zeolites from Prefabricated Units 73 2.7.2 Assembling Fe-ZSM-5 fromActive Centers and Silicate Building Units 74 2.7.3 A Real-Time Probing for the Crystallization Process: In Situ Raman Spectroscopy 76 2.8 Conclusions 80 References 81 3 Electronic Spectroscopy: Ultra Violet-visible and Near IR Spectroscopies 89 Friederike C. Jentoft 3.1 Introduction and Overview 89 3.1.1 Scope 89 3.1.2 History 89 3.1.3 Overview 91 3.2 UV–vis–NIR Spectra 93 3.2.1 Spectra Representation 93 3.2.1.1 Spectral Position of Absorption Features 93 3.2.1.2 Intensity of Absorption Features 93 3.2.2 Spectra Processing 98 3.2.3 Transitions in Molecular Species 99 3.2.3.1 Selection Rules 99 3.2.3.2 Individual Molecules 99 3.2.3.3 Composite Species: Metal Complexes 101 3.2.4 Transitions in Extended Solid Structures 104 3.2.4.1 Bandgaps 104 3.2.4.2 Metallic Colloids: Localized Surface Plasmon Resonance 106 3.2.5 Quantitative Analysis 107 3.3 Experimental Considerations 108 3.3.1 Instrumentation: Spectrometers, Sources, and Detectors 108 3.3.1.1 Overview of Essential Instrument Components 108 3.3.1.2 Instrument Selection Criteria for Measurements of Solids 110 3.3.2 Optical Configuration and Cells for Controlled Environments 110 3.3.2.1 Transmission Mode 111 3.3.2.2 Cells for Use in Transmission Mode 111 3.3.2.3 Diffuse Reflection Mode: Integrating Spheres 112 3.3.2.4 Cells for Use with Integrating Spheres 113 3.3.2.5 Diffuse Reflection Mode: Mirror Optics 115 3.3.2.6 Cells for Use with Mirror Optics Attachment 116 3.3.2.7 Diffuse Reflection Mode: Fiber-Optic Probes 117 3.3.2.8 Cells for Use with Fiber-Optic Probes 118 3.3.2.9 Combination of UV–vis–NIR with Other Techniques 119 3.4 Formation and Alteration of Solids 120 3.4.1 Precursor Analysis 120 3.4.2 Solid Formation 121 3.4.3 Characterization of Solids 122 3.4.3.1 Isomorphous Substitution of Framework Cations in Zeolites 123 3.4.3.2 Ion Exchange in Zeolites 124 3.4.3.3 Dispersion of Supported Metal Oxide Species 125 3.4.3.4 Bandgap Determination in Semiconductors 125 3.4.3.5 Spatially Resolved Spectroscopy of Specimens with Compositional Variation on the Millimeter Scale 127 3.4.3.6 Spatially Resolved Spectroscopy of Specimens with Compositional Variation on the Micrometer Scale 127 3.4.4 Probing of Surface Properties 129 3.4.5 Dynamic Experiments 129 3.4.5.1 Dehydration 129 3.5 Surface Reactivity and Catalysis 130 3.5.1 Oxidation State and Coordination Changes 130 3.5.1.1 Oxidation State of Transition Metals in Supported MOx Moieties or Solid Solutions 130 3.5.1.2 Supported Metals: Oxidation State and Particle Size and Shape 131 3.5.2 Hydrocarbon Species on Surfaces 133 3.5.2.1 Reference Spectra 133 3.5.2.2 Surface Hydrocarbon Pool Under Reaction Conditions 137 3.5.2.3 Deactivation and Regeneration 138 3.6 Conclusions 139 References 140 4 Photoluminescence Spectroscopy 149 Masaya Matsuoka, Masakazu Saito, and Masakazu Anpo 4.1 Introduction 149 4.2 Basic Principles of Photoluminescence 150 4.3 General Aspects of Photoluminescence Measurements 153 4.3.1 Steady-State Photoluminescence Measurements 153 4.3.2 Time-Resolved Photoluminescence Measurements 154 4.4 Characterization of Catalysts by Photoluminescence and Time-Resolved Photoluminescence Spectroscopy 156 4.4.1 In Situ Photoluminescence of Microcrystalline MgO 156 4.4.2 In Situ Photoluminescence of Bulk TiO2 Photocatalysts 159 4.4.3 In Situ Photoluminescence of Highly Dispersed Transition Metal Ions and Oxides 163 4.4.3.1 V-Containing BEA Zeolite Catalysts 163 4.4.3.2 Ag+/MFI Catalysts 165 4.5 Investigations of the Dynamics of Photocatalysis by Time-Resolved Photoluminescence Spectroscopy 165 4.5.1 Dynamics of Photocatalytic Reactions on TiO2 Photocatalysts 166 4.5.2 Dynamics of Photocatalytic Reactions on Highly Dispersed Transition Metal Ion and Oxide Catalysts 169 4.5.2.1 Cu+/Zeolite Catalysts 169 4.5.2.2 Ti Oxide/Zeolite Catalysts 175 4.5.2.3 Mo Oxide/SiO2 Catalysts 177 4.6 Conclusion 182 References 182 5 Neutron Scattering 185 Hervé Jobic 5.1 Introduction 185 5.2 Introduction to the Theory 186 5.2.1 Properties of Neutrons 186 5.2.2 Scattering Cross-Sections 187 5.2.3 Coherent and Incoherent Scattering 188 5.3 Experimental 190 5.4 Structure 192 5.5 Dynamics 194 5.5.1 Vibrational Spectroscopy 195 5.5.2 Diffusive Motions 197 5.5.2.1 Neutron Spin-Echo Technique 198 5.5.2.2 Rotational Motion 201 5.5.2.3 Translational Motion 202 5.6 Conclusion 208 References 208 6 Sum Frequency Generation and Infrared Reflection Absorption Spectroscopy 211 Karin Föttinger, Christian Weilach, and Günther Rupprechter 6.1 Introduction 211 6.2 Theoretical Background of SFG 213 6.2.1 SFG Signal Intensity and Selection Rules 215 6.2.2 Surface Concentration (Coverage) and SFG Signal Intensity 216 6.3 Spectrometer Setup 217 6.3.1 Modes of Operation 218 6.4 Case Studies 221 6.4.1 Metal Single-Crystal Surfaces 221 6.4.2 Bimetallic Surfaces 228 6.4.3 Oxide Surfaces 233 6.4.4 Metal Nanoparticles on Oxide Surfaces 240 6.5 Conclusion 245 References 245 7 Infra Red Reflection Absorption Spectroscopy and Polarisation Modulation-IRRAS 255 Christophe Méthivier and Claire-Marie Pradier 7.1 Introduction 255 7.1.1 Some History 256 7.2 Principle of IRAS 258 7.3 Principle of PM-IRAS 261 7.4 Applications of IRAS and PM-IRAS 263 7.4.1 Formation of Self-Assembled Monolayers 263 7.4.2 Adsorption of Organic Small Molecules and Chirality 266 7.4.3 Monitoring Surface Reactivity and Catalysis 268 7.4.3.1 Oxidation of CO on Ru 268 7.4.3.2 CO hydrogenation on Ru 270 7.4.3.3 Vinyl Acetate Synthesis Reaction on Pd 270 7.4.3.4 Oxidation of NH3 and reduction of N2O by NH3 on Cu 272 7.4.3.5 Decomposition of Methanol on Pd 275 7.4.3.6 Dissociation of NO on Rh 275 7.4.3.7 Reactivity/Storage of NO on Metal and Oxide Surfaces 277 7.4.4 Surface Functionalization and Elaboration of Sensors 281 7.4.5 PM-IRAS in the Liquid Phase 282 7.5 Conclusion 285 References 286 8 Nuclear Magnetic Resonance Spectroscopy 289 Lynn F. Gladden, Michal Lutecki, and James McGregor 8.1 Introduction and Historical Perspective 289 8.2 Theory 291 8.2.1 Basic Principles of NMR 291 8.2.1.1 Zeeman Interaction 292 8.2.1.2 Dipolar Interaction 292 8.2.1.3 Chemical Shift Interaction 293 8.2.1.4 Quadrupolar Interaction 293 8.2.1.5 Indirect Electron Coupled Interaction 294 8.2.2 Relaxation Times 294 8.2.3 Application of Magnetic Field Gradients 295 8.2.3.1 Magnetic Resonance Imaging 295 8.2.3.2 Measuring Flow and Diffusion 296 8.3 Popular NMR Techniques for Studying Solids 297 8.3.1 General Techniques for Bulk and Surface Characterization 298 8.3.2 Studying Quadrupolar Systems with I >1/2 299 8.3.3 Techniques for Measuring Heteronuclear Dipolar Couplings 300 8.4 Characterization of Heterogeneous Catalysts 302 8.4.1 Silica- and Alumina-Containing Materials 303 8.4.1.1 Pure Silicas and Aluminas 303 8.4.1.2 Zeolites and Aluminosilicates 304 8.4.2 Vanadium-Containing Materials 305 8.4.3 Surface Acidity and Basicity 306 8.5 Porosity, Adsorption, and Transport Processes 308 8.5.1 Porosity 308 8.5.1.1 129Xe NMR 308 8.5.1.2 T1 and T2 Relaxometry 309 8.5.1.3 Magnetic Resonance Imaging 310 8.5.2 Adsorption 311 8.5.3 Diffusion 312 8.6 ‘‘In Situ’’ NMR 313 8.6.1 Experimental Apparatus 314 8.6.1.1 Batch Conditions 314 8.6.1.2 Flow Conditions 315 8.6.2 Applications 317 8.6.2.1 Batch Conditions 317 8.6.2.2 Flow Conditions 322 8.6.2.3 Coupling with a Second Technique 325 8.7 Towards ‘‘Operando’’ Studies 329 8.8 Conclusion and Outlook 331 References 332 9 Electron Paramagnetic Resonance Spectroscopy 343 Piotr Pietrzyk, Zbigniew Sojka, and Elio Giamello 9.1 Introduction 343 9.1.1 Interaction of Matter with a Magnetic Field 343 9.1.2 Experimental Approaches in EPR 344 9.2 Principles of EPR 345 9.2.1 The Zeeman Effect and the Resonance Phenomenon 346 9.2.2 Spin Resonance and Spin Relaxation 348 9.3 Electron–Nucleus Hyperfine Interaction 350 9.3.1 The Hydrogen Atom (S ¼ 1/2 and I¼ 1/2) 353 9.3.2 Hyperfine Interaction in Polynuclear Systems 355 9.4 Experimental Background 356 9.5 Anisotropy of Magnetic Interactions in EPR: the g, A, and D Tensors 359 9.5.1 The g Tensor 361 9.5.2 The A Tensor 362 9.5.3 The Electron–Electron Interactions in S > 1/2 Systems: The D Tensor 363 9.5.4 The Spin-Hamiltonian 366 9.6 EPR Spectra and the Solid State: Single Crystal Versus Powders 366 9.6.1 Powder EPR Spectra 367 9.7 Guidelines to Interpretation of EPR Spectra 368 9.7.1 Classification of EPR Spectra and Determination of Spectral Parameters 368 9.7.2 Unusual Spectral Features and Puzzling Lineshapes 372 9.7.3 Dynamic Lineshape Effects and Partially Averaged Signals 376 9.8 Computer Simulation of Powder Spectra 378 9.9 Molecular Interpretation of Parameters 380 9.9.1 g-Tensor 380 9.9.2 Hyperfine Tensor 383 9.10 Quantum Chemical Calculations of Magnetic Parameters 386 9.11 Advanced EPR Techniques 388 9.11.1 Electron Spin Echo-Based Techniques 388 9.12 Characteristics of EPR Techniques in Application to Catalysis and Surfaces 389 9.12.1 Distinction Between Surface and Bulk Species 390 9.12.2 Poorly Resolved Spectra – Multifrequency Approach 392 9.12.3 Overlapping Signals 394 9.12.4 Strain Broadening and Smearing of Features with High Angular Anisotropy 395 9.12.5 Use of Probe Molecules and Spin Labels 396 9.13 Interfacial and Surface Charge-Transfer Processes 398 9.14 In Situ and Operando EPR Techniques 399 9.15 Conclusions and Prospects 403 References 403 10 Mössbauer Spectroscopy 407 Lorenzo Stievano and Friedrich E. Wagner 10.1 Introduction 407 10.2 The Mössbauer Effect 409 10.3 Radiation Source 411 10.4 Mössbauer Absorbers 414 10.5 Hyperfine Interactions 414 10.5.1 Electric Monopole Interaction 415 10.5.2 Magnetic Dipole Interaction 417 10.5.3 Electric Quadrupole Interaction 419 10.6 Experimental Setups 421 10.6.1 Transmission Mössbauer Spectroscopy 421 10.6.2 Surface-Sensitive Mössbauer Spectroscopy 422 10.6.3 Emission Mössbauer Spectroscopy 423 10.7 Evaluation of Experimental Data 424 10.7.1 Spectra Folding 424 10.7.2 Spectra Fitting 424 10.8 Theoretical Calculation of Mössbauer Parameters 426 10.9 Common Mössbauer-Active Transitions 427 10.9.1 The 14.4keV Mössbauer Transition of 57Fe 427 10.9.2 The 89.4 keV Mössbauer Transition of 99Ru 429 10.9.3 The 23.9 keV Mössbauer Transition of 119Sn 430 10.9.4 The 37.1 keV Mössbauer Transition of 121Sb 432 10.9.5 The 73.0 keV Mössbauer Transition of 193Ir 432 10.9.6 The 77.3 keV Mössbauer Transition of 197Au 433 10.10 Survey of Applications of the Mössbauer Effect in the Study of Catalytic Materials 434 10.10.1 197Au Mössbauer Spectroscopy in the Study of Gold Catalysts 435 10.10.1.1 Electronic Properties: Au/Al2O3 Oxidation Catalysts 435 10.10.1.2 Determination of Chemical Composition: Supported AuPd Alloys 436 10.10.1.3 Determination of Lamb–Mössbauer f-Factors for Quantitative Analyses: Au/Activated Carbon Catalysts for the Hydrochlorination of Acetylene 437 10.10.1.4 Identification of Surface Species: Gold Nanoparticles Embedded in Mylar 438 10.10.2 57Fe Mössbauer Spectroscopic Study of Iron-Containing Catalysts 439 10.10.2.1 Superparamagnetism and the Determination of Particle Sizes: Fe/C Catalysts for CO Hydrogenation 440 10.10.2.2 In Situ Measurements: Iron-Based Fischer–Tropsch Catalysts 443 10.10.2.3 Emission Mössbauer Spectroscopy: Cobalt-Based Fischer–Tropsch Catalysts 444 10.10.3 119Sn Mössbauer Study of Bimetallic Tin-Containing Catalysts 446 10.11 Conclusion 447 References 448 11 Low Energy Ion Scattering and Secondary Ion Mass Spectrometry 453 Norbert Kruse and Sergey Chenakin 11.1 Introduction 453 11.2 Secondary Ion Mass Spectrometry 457 11.2.1 Basic Principles 457 11.2.2 Potential of SIMS 459 11.3 Low-Energy Ion Scattering (Ion Scattering Spectroscopy) 461 11.3.1 Main Concepts 461 11.3.2 Potentialities of LEIS 463 11.4 Single-Crystal and Polycrystalline Metal Surfaces 465 11.4.1 Surface Defects and Adsorption of Simple Molecules 465 11.4.2 Adsorption of Organic Molecules 469 11.4.3 Oxidation and Corrosion 470 11.5 Amorphous Metallic Alloys 472 11.6 From Model to Real Catalysts 474 11.6.1 Structural Effects 474 11.6.2 Dispersion Effects 477 11.6.3 Preparation and Activation Effects 480 11.6.4 Compositional Effects in Various Catalytic Reactions 484 11.6.4.1 CO Hydrogenation 484 11.6.4.2 Hydrocarbon Oxidation 486 11.6.4.3 Hydrogenation and Oxidative Dehydrogenation 489 11.6.5 Promotion and Poisoning Effects 489 11.6.5.1 CO Hydrogenation to Methanol 490 11.6.5.2 CO Oxidation 490 11.6.5.3 Hydrocarbon Partial and Total Oxidation 492 11.6.5.4 Cracking 494 11.6.5.5 Beckmann Rearrangement 494 11.6.5.6 Aldose Oxidation 495 11.6.5.7 Nitrite and Nitrate Reduction 495 11.6.5.8 Cl-Related Effects in Various Reactions 496 11.6.6 Active Sites 497 11.7 Conclusion 501 References 502 12 X-ray Absorption Spectroscopy 511 Christophe Geantet and Christophe Pichon 12.1 Introduction 511 12.2 History of X-Ray Absorption Spectroscopy 511 12.3 Principle of X-Ray Absorption Spectroscopy: XANES, EXAFS 512 12.4 Experimentation and Data Processing 515 12.5 Application to Oxide Materials 521 12.6 Applications to the Study of Sulfide Catalysts 524 12.6.1 Structure of the Active Phase 524 12.6.2 Activation of Sulfide Catalysts 525 12.7 Application to Metal Catalysts 527 12.7.1 Structure and Size of (Bi-)Metallic Particles 528 12.7.2 Evolution of the Bimetallic Structure Under Reaction or Poisoning Conditions 530 12.8 Conclusion and Perspectives 533 References 534 13 Auger Electron, X ray and UV Photoelectron Spectroscopies 537 Wolfgang Grünert 13.1 Introduction 537 13.1.1 The Relation Between XPS, UPS, and AES 537 13.1.2 A Glimpse at History 539 13.2 Sources of Analytical Information 540 13.2.1 XPS Binding Energies 540 13.2.1.1 Parameters Affecting XPS Binding Energies 540 13.2.1.2 Theoretical Prediction of XPS Binding Energies 545 13.2.1.3 Practical Aspects 547 13.2.2 The Analytical Potential of XPS Lineshapes 548 13.2.2.1 Spin–Orbit Splitting 548 13.2.2.2 Charge Transfer Satellites 549 13.2.2.3 Other Shake-Up Type Satellites 550 13.2.2.4 Multiplet Splitting 551 13.2.3 Surface Sensitivity: Working with XPS Intensities 553 13.2.3.1 Homogeneous and Inhomogeneous Sampling Region 553 13.2.3.2 Increasing the Surface Sensitivity of XPS 557 13.2.3.3 Determining XPS Intensities – Lineshapes and Signal Backgrounds 560 13.2.4 XAES and XPS – Structural Sensitivity via the Auger Parameter 562 13.2.5 Ultraviolet Photoelectron Spectroscopy 565 13.2.6 XPS and Other Methods 566 13.3 Instrumentation 567 13.3.1 Conventional XPS 567 13.3.2 Lateral Resolution, Imaging 569 13.3.3 Ambient-Pressure Photoelectron Spectroscopy (APPES) 570 13.4 Case Studies 571 13.4.1 Combination of Methods: Strong Metal–Support Interaction in a Ag/TiO2 Catalyst 571 13.4.2 Depth Resolution: the Surface Composition of Stoichiometric Bulk Mixed Vanadates and Molybdates 573 13.4.3 APPES: on the Doorstep of a New Age of XPS 574 13.5 Outlook 578 References 579 14 Single Molecule Spectroscopy 585 Timo Lebold, Jens Michaelis, Thomas Bein, and Christoph Bräuchle 14.1 Introduction 585 14.2 Description of the Method 586 14.3 Experimental Considerations and Constraints 591 14.4 Mesoporous Silica Materials 592 14.5 Selected Studies 593 14.5.1 Correlating Dynamic and Structural Information by Combining Single-Molecule Microscopy and High-Resolution Transmission Electron Microscopy 593 14.5.2 Analyzing the Diffusion Dynamics Within a Silica Mesopore with One-Channel Accuracy Using Single-Molecule Microscopy and Single-Particle Tracking 595 14.5.3 Analyzing Orientational and Spectral Dynamics at Adsorption Sites Inside a CTAB Templated Thin Mesoporous Silica Film 598 14.5.4 Visualization of the Mechanisms Governing the Structure Formation of Mesoporous Silica Nanochannels 601 14.6 Conclusion 605 References 605 Volume 2 Part Two Macroscopic Techniques 609 15 X-Ray Diffraction and Small Angle X-Ray Scattering 611 Malte Behrens and Robert Schlögl 16 Transmission Electron Microscopy 655 John Meurig Thomas and Caterina Ducati 17 Scanning Probe Microscopy and Spectroscopy 703 Tomoaki Nishino 18 Thermal Methods 747 Adrien Mekki-Berrada and Aline Auroux 19 Surface Area/Porosity, Adsorption, Diffusion 853 Philip L. Llewellyn, Emily Bloch, and Sandrine Bourrelly Part Three Characterization of the Fluid Phase (Gas and/or Liquid) 881 20 Mass Spectrometry 883 Sandra Alves and Jean-Claude Tabet 21 Chromatographic Methods 953 Fabrice Bertoncini, Didier Thiebaut, Marion Courtiade, and Thomas Dutriez 22 Transient Techniques: Temporal Analysis of Products and Steady State Isotopic Transient Kinetic Analysis 1013 Angelos M. Efstathiou, John T. Gleaves, and Gregory S. Yablonsky Part Four Advanced Characterization 1075 23 Techniques Coupling for Catalyst Characterisation 1077 Andrew M. Beale, Matthew G. O’Brien, and Bert M. Weckhuysen 24 Quantum Chemistry Methods 1119 Philippe Sautet Conclusions 1147 Michel Che and Jacques C. Védrine Index 1153 jinyx1989已经在催化版块被发过这本书: http://muchong.com/bbs/viewthread.php?tid=6392123&fpage=1 但是是扫描版,我后来将高清pdf版本发在资源共享区的专业书籍版块: http://muchong.com/bbs/viewthread.php?tid=6455799&fpage=1 可是浏览的人几乎没有,所以在咨询过原贴版主是否违规后,在本版块重发希望得到更多的响应。请版主核查! [ Last edited by Actor2006 on 2013-10-20 at 10:23 ] ![]() [ Last edited by liwentao2010 on 2014-10-19 at 14:13 ] Sample Text [ Last edited by Actor2006 on 2014-12-10 at 14:31 ] 之前发在专业书籍版,后来发现没有多少人关注,就发到催化版,结果被审查为交流贴,链接也就没有了!要下载,可以到下面链接去下载,不便之处,请见谅! http://muchong.com/bbs/viewthread.php?tid=6455799 [ Last edited by Actor2006 on 2014-12-10 at 14:33 ] |
» 收录本帖的淘帖专辑推荐
新能源 | 碳材料负载催化 | 催化软件及资料 | 科研学习 |
表征手段 | books | 书籍 | 催化 |
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
内蒙古大学青年长江学者王蕾教授课题组2026年博士招聘,2-3人
已经有11人回复
双一流大学湘潭大学“化工过程模拟与强化”国家地方联合工程研究中心招收各类博士生
已经有24人回复
专业论文润色/翻译怎么收费?
已经有300人回复
多相催化-2026年CSC博士及洪堡合作博士后招生!
已经有0人回复
求一个缩酮反应的产物
已经有0人回复
中国地质大学(武汉)—国家级青年人才杨明教授组-招收博士-新能源材料化学及催化材料
已经有27人回复
求光催化产过氧化氢的PPT !!!毕业答辩需要
已经有1人回复
求一个反应的产物
已经有1人回复
2025年度中央安全生产考核巡查 一季度明查暗访典型案例分析报告汇编
已经有0人回复
» 本主题相关商家推荐: (我也要在这里推广)

mydawn
铁杆木虫 (著名写手)
- 应助: 60 (初中生)
- 金币: 6670.9
- 散金: 539
- 红花: 11
- 帖子: 1358
- 在线: 981.8小时
- 虫号: 1133647
- 注册: 2010-10-28
- 专业: 催化化学
3楼2013-10-20 20:06:25
|
之前发在专业书籍版,后来发现没有多少人关注,就发到催化版,结果被审查为交流贴,链接也就没有了!要下载,可以到下面链接去下载,不便之处,请见谅! http://muchong.com/bbs/viewthread.php?tid=6455799 |

12楼2014-12-10 14:29:47
leiws
至尊木虫 (职业作家)
木虫浪子
- 应助: 327 (大学生)
- 金币: 20376.5
- 散金: 1872
- 红花: 62
- 帖子: 3921
- 在线: 2134.8小时
- 虫号: 832300
- 注册: 2009-08-22
- 性别: GG
- 专业: 催化化学

2楼2013-10-20 11:48:35

4楼2013-11-18 19:58:15
larry1695
金虫 (小有名气)
- 应助: 0 (幼儿园)
- 金币: 1168.2
- 散金: 21
- 红花: 1
- 帖子: 274
- 在线: 198.8小时
- 虫号: 716763
- 注册: 2009-03-07
- 专业: 催化化学
5楼2013-11-28 11:12:21
zhangcencj
金虫 (小有名气)
- 应助: 0 (幼儿园)
- 金币: 81
- 红花: 2
- 帖子: 133
- 在线: 113.7小时
- 虫号: 1725937
- 注册: 2012-03-29
- 性别: GG
- 专业: 催化化学

6楼2014-03-11 00:12:08
![]() ![]() |
7楼2014-10-18 10:52:55
Z11030154
木虫 (正式写手)
- 应助: 12 (小学生)
- 金币: 4325.5
- 散金: 73
- 红花: 2
- 帖子: 436
- 在线: 93.2小时
- 虫号: 1410062
- 注册: 2011-09-20
- 性别: GG
- 专业: 能源化工

8楼2014-10-18 16:08:52
|
顶一下,感谢分享 [ 发自小木虫客户端 ] |
9楼2014-10-19 12:16:21

10楼2014-10-20 00:08:40














回复此楼
杨超群
