24小时热门版块排行榜    

CyRhmU.jpeg
查看: 6549  |  回复: 13

Actor2006

至尊木虫 (知名作家)

[交流] wiley 2012 “固体材料和非均相催化剂表征” 原版两卷全,高清pdf版已有12人参与

书名:Characterization of Solid Materials and Heterogeneous Catalysts - From Structure to Surface Reactivity (Volume 1 & 2)
作者:Michel Che and Jacques C. Védrine
ISBN(Print): 978-3-527-32687-7
出版时间:2012
版权:Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
链接:http://onlinelibrary.wiley.com/book/10.1002/9783527645329
目录:
Volume 1
Part One Molecular/Local Spectroscopies 1
1 Infrared Spectroscopy 3
Frédéric Thibault-Starzyk and Françoise Maugé
1.1 Introduction 3
1.2 Principles of IR Spectroscopy and Basic Knowledge for Its Use 3
1.2.1 IR Light 3
1.2.2 Matter–Radiation Interaction 4
1.2.3 Spectrometry, Interferometry 4
1.2.4 Limitations of and Problems with the Fourier Transform 6
1.3 Experimental Considerations 7
1.3.1 Technical Aspects of the Fourier Transform 7
1.3.2 Practical Implementation 8
1.3.2.1 Transmission Experiments, Quantitative Aspects 8
1.3.2.2 Diffuse Reflection 9
1.4 Use of IR Spectroscopy to Characterize Solids 11
1.4.1 IR Spectrum and Structure of a Solid 11
1.4.1.1 The Example of Zeolites 11
1.4.1.2 Substitution of Metals in the Structure of Zeolites 13
1.4.2 Activation: Cleaning the Sample to Observe Surface Sites 13
1.4.2.1 Experimental Aspects 13
1.4.2.2 Activation – Cleaning the Sample to Observe Surface Sites 14
1.4.3 The Spectrum of OH Groups 17
1.4.3.1 OH Groups on Alumina 18
1.4.3.2 OH Groups in Zeolites 18
1.4.4 Characterization of Acidity with Probe Molecules 20
1.4.4.1 Brønsted Sites: Hydrogen Bonding and IR Spectroscopy 21
1.4.4.2 Molecular Probes for Lewis Acidity 24
1.4.4.3 Common Probe Molecules for Acidity 24
1.4.5 Characterization of Basicity with Probe Molecules 32
1.4.5.1 CO2 as a Probe for Basic Sites 32
1.4.5.2 Protic Molecules 33
1.4.5.3 Methanol 33
1.4.6 Probes for Supported Metal Catalysts 34
1.4.7 Probes for Sulfide Catalysts 36
1.4.8 Quantitative Analysis by Coupling IR Spectroscopy with Gravimetry 38
1.5 Application to Surface Reactivity: Operando Spectroscopy 39
1.5.1 Experimental Setup for Operando IR Spectroscopy and Reactions
Conditions 40
1.5.2 Examples of Operando IR Measurements 40
1.6 Conclusion 45
References 45
2 Raman and UV-Raman Spectroscopies 49
Fengtao Fan, Zhaochi Feng, and Can Li
2.1 Introduction 49
2.1.1 Raman Spectroscopy 49
2.1.2 FT-Raman Spectroscopy 51
2.1.3 UV Raman Spectroscopy 53
2.1.4 Resonance Raman Spectroscopy 53
2.2 Characterization of Active Sites and Phase Structure ofMetal Oxides 55
2.2.1 Identification of the Active Species on Metal Oxides 55
2.2.2 Phase Transformation in the Surface Region of Metal Oxides 56
2.3 Characterization of Surface Metal Oxide Species on Supported
Metal Oxides 59
2.4 Electron–Phonon Coupling in Nanostructured Materials 63
2.5 Characterization of sp2 Carbon Materials 64
2.6 Characterization of Transition Metal-Containing Microporous
and Mesoporous Materials 67
2.6.1 Identification of the Isolated Quadrivalent Transition Metal
Sites in Microporous and Mesoporous Materials 67
2.6.2 Identification of the Isolated Trivalent Transition Metal Sites
in Microporous and Mesoporous Materials 69
2.6.3 Identification of Extra-Framework Active Sites in Microporous
and Mesoporous Materials 71
2.7 Synthesis Mechanisms of Molecular Sieves 73
2.7.1 Assembling Zeolites from Prefabricated Units 73
2.7.2 Assembling Fe-ZSM-5 fromActive Centers and Silicate Building Units 74
2.7.3 A Real-Time Probing for the Crystallization Process: In Situ
Raman Spectroscopy 76
2.8 Conclusions 80
References 81
3 Electronic Spectroscopy: Ultra Violet-visible and Near IR
Spectroscopies 89
Friederike C. Jentoft
3.1 Introduction and Overview 89
3.1.1 Scope 89
3.1.2 History 89
3.1.3 Overview 91
3.2 UV–vis–NIR Spectra 93
3.2.1 Spectra Representation 93
3.2.1.1 Spectral Position of Absorption Features 93
3.2.1.2 Intensity of Absorption Features 93
3.2.2 Spectra Processing 98
3.2.3 Transitions in Molecular Species 99
3.2.3.1 Selection Rules 99
3.2.3.2 Individual Molecules 99
3.2.3.3 Composite Species: Metal Complexes 101
3.2.4 Transitions in Extended Solid Structures 104
3.2.4.1 Bandgaps 104
3.2.4.2 Metallic Colloids: Localized Surface Plasmon Resonance 106
3.2.5 Quantitative Analysis 107
3.3 Experimental Considerations 108
3.3.1 Instrumentation: Spectrometers, Sources, and Detectors 108
3.3.1.1 Overview of Essential Instrument Components 108
3.3.1.2 Instrument Selection Criteria for Measurements of Solids 110
3.3.2 Optical Configuration and Cells for Controlled
Environments 110
3.3.2.1 Transmission Mode 111
3.3.2.2 Cells for Use in Transmission Mode 111
3.3.2.3 Diffuse Reflection Mode: Integrating Spheres 112
3.3.2.4 Cells for Use with Integrating Spheres 113
3.3.2.5 Diffuse Reflection Mode: Mirror Optics 115
3.3.2.6 Cells for Use with Mirror Optics Attachment 116
3.3.2.7 Diffuse Reflection Mode: Fiber-Optic Probes 117
3.3.2.8 Cells for Use with Fiber-Optic Probes 118
3.3.2.9 Combination of UV–vis–NIR with Other Techniques 119
3.4 Formation and Alteration of Solids 120
3.4.1 Precursor Analysis 120
3.4.2 Solid Formation 121
3.4.3 Characterization of Solids 122
3.4.3.1 Isomorphous Substitution of Framework Cations in Zeolites 123
3.4.3.2 Ion Exchange in Zeolites 124
3.4.3.3 Dispersion of Supported Metal Oxide Species 125
3.4.3.4 Bandgap Determination in Semiconductors 125
3.4.3.5 Spatially Resolved Spectroscopy of Specimens with Compositional
Variation on the Millimeter Scale 127
3.4.3.6 Spatially Resolved Spectroscopy of Specimens with Compositional
Variation on the Micrometer Scale 127
3.4.4 Probing of Surface Properties 129
3.4.5 Dynamic Experiments 129
3.4.5.1 Dehydration 129
3.5 Surface Reactivity and Catalysis 130
3.5.1 Oxidation State and Coordination Changes 130
3.5.1.1 Oxidation State of Transition Metals in Supported MOx
Moieties or Solid Solutions 130
3.5.1.2 Supported Metals: Oxidation State and Particle Size
and Shape 131
3.5.2 Hydrocarbon Species on Surfaces 133
3.5.2.1 Reference Spectra 133
3.5.2.2 Surface Hydrocarbon Pool Under Reaction
Conditions 137
3.5.2.3 Deactivation and Regeneration 138
3.6 Conclusions 139
References 140
4 Photoluminescence Spectroscopy 149
Masaya Matsuoka, Masakazu Saito, and Masakazu Anpo
4.1 Introduction 149
4.2 Basic Principles of Photoluminescence 150
4.3 General Aspects of Photoluminescence Measurements 153
4.3.1 Steady-State Photoluminescence Measurements 153
4.3.2 Time-Resolved Photoluminescence Measurements 154
4.4 Characterization of Catalysts by Photoluminescence and
Time-Resolved Photoluminescence Spectroscopy 156
4.4.1 In Situ Photoluminescence of Microcrystalline MgO 156
4.4.2 In Situ Photoluminescence of Bulk TiO2 Photocatalysts 159
4.4.3 In Situ Photoluminescence of Highly Dispersed Transition Metal
Ions and Oxides 163
4.4.3.1 V-Containing BEA Zeolite Catalysts 163
4.4.3.2 Ag+/MFI Catalysts 165
4.5 Investigations of the Dynamics of Photocatalysis by Time-Resolved
Photoluminescence Spectroscopy 165
4.5.1 Dynamics of Photocatalytic Reactions on TiO2
Photocatalysts 166
4.5.2 Dynamics of Photocatalytic Reactions on Highly Dispersed
Transition Metal Ion and Oxide Catalysts 169
4.5.2.1 Cu+/Zeolite Catalysts 169
4.5.2.2 Ti Oxide/Zeolite Catalysts 175
4.5.2.3 Mo Oxide/SiO2 Catalysts 177
4.6 Conclusion 182
References 182
5 Neutron Scattering 185
Hervé Jobic
5.1 Introduction 185
5.2 Introduction to the Theory 186
5.2.1 Properties of Neutrons 186
5.2.2 Scattering Cross-Sections 187
5.2.3 Coherent and Incoherent Scattering 188
5.3 Experimental 190
5.4 Structure 192
5.5 Dynamics 194
5.5.1 Vibrational Spectroscopy 195
5.5.2 Diffusive Motions 197
5.5.2.1 Neutron Spin-Echo Technique 198
5.5.2.2 Rotational Motion 201
5.5.2.3 Translational Motion 202
5.6 Conclusion 208
References 208
6 Sum Frequency Generation and Infrared Reflection Absorption
Spectroscopy 211
Karin Föttinger, Christian Weilach, and Günther Rupprechter
6.1 Introduction 211
6.2 Theoretical Background of SFG 213
6.2.1 SFG Signal Intensity and Selection Rules 215
6.2.2 Surface Concentration (Coverage) and SFG Signal Intensity 216
6.3 Spectrometer Setup 217
6.3.1 Modes of Operation 218
6.4 Case Studies 221
6.4.1 Metal Single-Crystal Surfaces 221
6.4.2 Bimetallic Surfaces 228
6.4.3 Oxide Surfaces 233
6.4.4 Metal Nanoparticles on Oxide Surfaces 240
6.5 Conclusion 245
References 245
7 Infra Red Reflection Absorption Spectroscopy and Polarisation
Modulation-IRRAS 255
Christophe Méthivier and Claire-Marie Pradier
7.1 Introduction 255
7.1.1 Some History 256
7.2 Principle of IRAS 258
7.3 Principle of PM-IRAS 261
7.4 Applications of IRAS and PM-IRAS 263
7.4.1 Formation of Self-Assembled Monolayers 263
7.4.2 Adsorption of Organic Small Molecules and Chirality 266
7.4.3 Monitoring Surface Reactivity and Catalysis 268
7.4.3.1 Oxidation of CO on Ru 268
7.4.3.2 CO hydrogenation on Ru 270
7.4.3.3 Vinyl Acetate Synthesis Reaction on Pd 270
7.4.3.4 Oxidation of NH3 and reduction of N2O by NH3 on Cu 272
7.4.3.5 Decomposition of Methanol on Pd 275
7.4.3.6 Dissociation of NO on Rh 275
7.4.3.7 Reactivity/Storage of NO on Metal and Oxide Surfaces 277
7.4.4 Surface Functionalization and Elaboration of Sensors 281
7.4.5 PM-IRAS in the Liquid Phase 282
7.5 Conclusion 285
References 286
8 Nuclear Magnetic Resonance Spectroscopy 289
Lynn F. Gladden, Michal Lutecki, and James McGregor
8.1 Introduction and Historical Perspective 289
8.2 Theory 291
8.2.1 Basic Principles of NMR 291
8.2.1.1 Zeeman Interaction 292
8.2.1.2 Dipolar Interaction 292
8.2.1.3 Chemical Shift Interaction 293
8.2.1.4 Quadrupolar Interaction 293
8.2.1.5 Indirect Electron Coupled Interaction 294
8.2.2 Relaxation Times 294
8.2.3 Application of Magnetic Field Gradients 295
8.2.3.1 Magnetic Resonance Imaging 295
8.2.3.2 Measuring Flow and Diffusion 296
8.3 Popular NMR Techniques for Studying Solids 297
8.3.1 General Techniques for Bulk and Surface Characterization 298
8.3.2 Studying Quadrupolar Systems with I >1/2 299
8.3.3 Techniques for Measuring Heteronuclear Dipolar Couplings 300
8.4 Characterization of Heterogeneous Catalysts 302
8.4.1 Silica- and Alumina-Containing Materials 303
8.4.1.1 Pure Silicas and Aluminas 303
8.4.1.2 Zeolites and Aluminosilicates 304
8.4.2 Vanadium-Containing Materials 305
8.4.3 Surface Acidity and Basicity 306
8.5 Porosity, Adsorption, and Transport Processes 308
8.5.1 Porosity 308
8.5.1.1 129Xe NMR 308
8.5.1.2 T1 and T2 Relaxometry 309
8.5.1.3 Magnetic Resonance Imaging 310
8.5.2 Adsorption 311
8.5.3 Diffusion 312
8.6 ‘‘In Situ’’ NMR 313
8.6.1 Experimental Apparatus 314
8.6.1.1 Batch Conditions 314
8.6.1.2 Flow Conditions 315
8.6.2 Applications 317
8.6.2.1 Batch Conditions 317
8.6.2.2 Flow Conditions 322
8.6.2.3 Coupling with a Second Technique 325
8.7 Towards ‘‘Operando’’ Studies 329
8.8 Conclusion and Outlook 331
References 332
9 Electron Paramagnetic Resonance Spectroscopy 343
Piotr Pietrzyk, Zbigniew Sojka, and Elio Giamello
9.1 Introduction 343
9.1.1 Interaction of Matter with a Magnetic Field 343
9.1.2 Experimental Approaches in EPR 344
9.2 Principles of EPR 345
9.2.1 The Zeeman Effect and the Resonance Phenomenon 346
9.2.2 Spin Resonance and Spin Relaxation 348
9.3 Electron–Nucleus Hyperfine Interaction 350
9.3.1 The Hydrogen Atom (S ¼ 1/2 and I¼ 1/2) 353
9.3.2 Hyperfine Interaction in Polynuclear Systems 355
9.4 Experimental Background 356
9.5 Anisotropy of Magnetic Interactions in EPR: the g, A, and D
Tensors 359
9.5.1 The g Tensor 361
9.5.2 The A Tensor 362
9.5.3 The Electron–Electron Interactions in S > 1/2 Systems: The D
Tensor 363
9.5.4 The Spin-Hamiltonian 366
9.6 EPR Spectra and the Solid State: Single Crystal Versus Powders 366
9.6.1 Powder EPR Spectra 367
9.7 Guidelines to Interpretation of EPR Spectra 368
9.7.1 Classification of EPR Spectra and Determination of Spectral
Parameters 368
9.7.2 Unusual Spectral Features and Puzzling Lineshapes 372
9.7.3 Dynamic Lineshape Effects and Partially Averaged Signals 376
9.8 Computer Simulation of Powder Spectra 378
9.9 Molecular Interpretation of Parameters 380
9.9.1 g-Tensor 380
9.9.2 Hyperfine Tensor 383
9.10 Quantum Chemical Calculations of Magnetic
Parameters 386
9.11 Advanced EPR Techniques 388
9.11.1 Electron Spin Echo-Based Techniques 388
9.12 Characteristics of EPR Techniques in Application to Catalysis
and Surfaces 389
9.12.1 Distinction Between Surface and Bulk Species 390
9.12.2 Poorly Resolved Spectra – Multifrequency Approach 392
9.12.3 Overlapping Signals 394
9.12.4 Strain Broadening and Smearing of Features with High
Angular Anisotropy 395
9.12.5 Use of Probe Molecules and Spin Labels 396
9.13 Interfacial and Surface Charge-Transfer Processes 398
9.14 In Situ and Operando EPR Techniques 399
9.15 Conclusions and Prospects 403
References 403
10 Mössbauer Spectroscopy 407
Lorenzo Stievano and Friedrich E. Wagner
10.1 Introduction 407
10.2 The Mössbauer Effect 409
10.3 Radiation Source 411
10.4 Mössbauer Absorbers 414
10.5 Hyperfine Interactions 414
10.5.1 Electric Monopole Interaction 415
10.5.2 Magnetic Dipole Interaction 417
10.5.3 Electric Quadrupole Interaction 419
10.6 Experimental Setups 421
10.6.1 Transmission Mössbauer Spectroscopy 421
10.6.2 Surface-Sensitive Mössbauer Spectroscopy 422
10.6.3 Emission Mössbauer Spectroscopy 423
10.7 Evaluation of Experimental Data 424
10.7.1 Spectra Folding 424
10.7.2 Spectra Fitting 424
10.8 Theoretical Calculation of Mössbauer Parameters 426
10.9 Common Mössbauer-Active Transitions 427
10.9.1 The 14.4keV Mössbauer Transition of 57Fe 427
10.9.2 The 89.4 keV Mössbauer Transition of 99Ru 429
10.9.3 The 23.9 keV Mössbauer Transition of 119Sn 430
10.9.4 The 37.1 keV Mössbauer Transition of 121Sb 432
10.9.5 The 73.0 keV Mössbauer Transition of 193Ir 432
10.9.6 The 77.3 keV Mössbauer Transition of 197Au 433
10.10 Survey of Applications of the Mössbauer Effect in the
Study of Catalytic Materials 434
10.10.1 197Au Mössbauer Spectroscopy in the Study of Gold
Catalysts 435
10.10.1.1 Electronic Properties: Au/Al2O3 Oxidation Catalysts 435
10.10.1.2 Determination of Chemical Composition: Supported
AuPd Alloys 436
10.10.1.3 Determination of Lamb–Mössbauer f-Factors for Quantitative
Analyses: Au/Activated Carbon Catalysts for the Hydrochlorination
of Acetylene 437
10.10.1.4 Identification of Surface Species: Gold Nanoparticles Embedded
in Mylar 438
10.10.2 57Fe Mössbauer Spectroscopic Study of Iron-Containing Catalysts 439
10.10.2.1 Superparamagnetism and the Determination of Particle Sizes:
Fe/C Catalysts for CO Hydrogenation 440
10.10.2.2 In Situ Measurements: Iron-Based Fischer–Tropsch Catalysts 443
10.10.2.3 Emission Mössbauer Spectroscopy: Cobalt-Based Fischer–Tropsch
Catalysts 444
10.10.3 119Sn Mössbauer Study of Bimetallic Tin-Containing Catalysts 446
10.11 Conclusion 447
References 448
11 Low Energy Ion Scattering and Secondary Ion Mass Spectrometry 453
Norbert Kruse and Sergey Chenakin
11.1 Introduction 453
11.2 Secondary Ion Mass Spectrometry 457
11.2.1 Basic Principles 457
11.2.2 Potential of SIMS 459
11.3 Low-Energy Ion Scattering (Ion Scattering Spectroscopy) 461
11.3.1 Main Concepts 461
11.3.2 Potentialities of LEIS 463
11.4 Single-Crystal and Polycrystalline Metal Surfaces 465
11.4.1 Surface Defects and Adsorption of Simple Molecules 465
11.4.2 Adsorption of Organic Molecules 469
11.4.3 Oxidation and Corrosion 470
11.5 Amorphous Metallic Alloys 472
11.6 From Model to Real Catalysts 474
11.6.1 Structural Effects 474
11.6.2 Dispersion Effects 477
11.6.3 Preparation and Activation Effects 480
11.6.4 Compositional Effects in Various Catalytic Reactions 484
11.6.4.1 CO Hydrogenation 484
11.6.4.2 Hydrocarbon Oxidation 486
11.6.4.3 Hydrogenation and Oxidative Dehydrogenation 489
11.6.5 Promotion and Poisoning Effects 489
11.6.5.1 CO Hydrogenation to Methanol 490
11.6.5.2 CO Oxidation 490
11.6.5.3 Hydrocarbon Partial and Total Oxidation 492
11.6.5.4 Cracking 494
11.6.5.5 Beckmann Rearrangement 494
11.6.5.6 Aldose Oxidation 495
11.6.5.7 Nitrite and Nitrate Reduction 495
11.6.5.8 Cl-Related Effects in Various Reactions 496
11.6.6 Active Sites 497
11.7 Conclusion 501
References 502
12 X-ray Absorption Spectroscopy 511
Christophe Geantet and Christophe Pichon
12.1 Introduction 511
12.2 History of X-Ray Absorption Spectroscopy 511
12.3 Principle of X-Ray Absorption Spectroscopy: XANES, EXAFS 512
12.4 Experimentation and Data Processing 515
12.5 Application to Oxide Materials 521
12.6 Applications to the Study of Sulfide Catalysts 524
12.6.1 Structure of the Active Phase 524
12.6.2 Activation of Sulfide Catalysts 525
12.7 Application to Metal Catalysts 527
12.7.1 Structure and Size of (Bi-)Metallic Particles 528
12.7.2 Evolution of the Bimetallic Structure Under Reaction or Poisoning
Conditions 530
12.8 Conclusion and Perspectives 533
References 534
13 Auger Electron, X ray and UV Photoelectron Spectroscopies 537
Wolfgang Grünert
13.1 Introduction 537
13.1.1 The Relation Between XPS, UPS, and AES 537
13.1.2 A Glimpse at History 539
13.2 Sources of Analytical Information 540
13.2.1 XPS Binding Energies 540
13.2.1.1 Parameters Affecting XPS Binding Energies 540
13.2.1.2 Theoretical Prediction of XPS Binding Energies 545
13.2.1.3 Practical Aspects 547
13.2.2 The Analytical Potential of XPS Lineshapes 548
13.2.2.1 Spin–Orbit Splitting 548
13.2.2.2 Charge Transfer Satellites 549
13.2.2.3 Other Shake-Up Type Satellites 550
13.2.2.4 Multiplet Splitting 551
13.2.3 Surface Sensitivity: Working with XPS Intensities 553
13.2.3.1 Homogeneous and Inhomogeneous Sampling Region 553
13.2.3.2 Increasing the Surface Sensitivity of XPS 557
13.2.3.3 Determining XPS Intensities – Lineshapes and Signal
Backgrounds 560
13.2.4 XAES and XPS – Structural Sensitivity via the Auger Parameter 562
13.2.5 Ultraviolet Photoelectron Spectroscopy 565
13.2.6 XPS and Other Methods 566
13.3 Instrumentation 567
13.3.1 Conventional XPS 567
13.3.2 Lateral Resolution, Imaging 569
13.3.3 Ambient-Pressure Photoelectron Spectroscopy (APPES) 570
13.4 Case Studies 571
13.4.1 Combination of Methods: Strong Metal–Support Interaction in a
Ag/TiO2 Catalyst 571
13.4.2 Depth Resolution: the Surface Composition of Stoichiometric
Bulk Mixed Vanadates and Molybdates 573
13.4.3 APPES: on the Doorstep of a New Age of XPS 574
13.5 Outlook 578
References 579
14 Single Molecule Spectroscopy 585
Timo Lebold, Jens Michaelis, Thomas Bein, and Christoph Bräuchle
14.1 Introduction 585
14.2 Description of the Method 586
14.3 Experimental Considerations and Constraints 591
14.4 Mesoporous Silica Materials 592
14.5 Selected Studies 593
14.5.1 Correlating Dynamic and Structural Information by Combining
Single-Molecule Microscopy and High-Resolution Transmission
Electron Microscopy 593
14.5.2 Analyzing the Diffusion Dynamics Within a Silica Mesopore with
One-Channel Accuracy Using Single-Molecule Microscopy and
Single-Particle Tracking 595
14.5.3 Analyzing Orientational and Spectral Dynamics at Adsorption
Sites Inside a CTAB Templated Thin Mesoporous Silica Film 598
14.5.4 Visualization of the Mechanisms Governing the Structure
Formation of Mesoporous Silica Nanochannels 601
14.6 Conclusion 605
References 605

Volume 2
Part Two Macroscopic Techniques 609
15 X-Ray Diffraction and Small Angle X-Ray Scattering 611
Malte Behrens and Robert Schlögl
16 Transmission Electron Microscopy 655
John Meurig Thomas and Caterina Ducati
17 Scanning Probe Microscopy and Spectroscopy 703
Tomoaki Nishino
18 Thermal Methods 747
Adrien Mekki-Berrada and Aline Auroux
19 Surface Area/Porosity, Adsorption, Diffusion 853
Philip L. Llewellyn, Emily Bloch, and Sandrine Bourrelly
Part Three Characterization of the Fluid Phase (Gas and/or Liquid) 881
20 Mass Spectrometry 883
Sandra Alves and Jean-Claude Tabet
21 Chromatographic Methods 953
Fabrice Bertoncini, Didier Thiebaut, Marion Courtiade, and Thomas Dutriez
22 Transient Techniques: Temporal Analysis of Products and
Steady State Isotopic Transient Kinetic Analysis 1013
Angelos M. Efstathiou, John T. Gleaves, and Gregory S. Yablonsky
Part Four Advanced Characterization 1075
23 Techniques Coupling for Catalyst Characterisation 1077
Andrew M. Beale, Matthew G. O’Brien, and Bert M. Weckhuysen
24 Quantum Chemistry Methods 1119
Philippe Sautet
Conclusions 1147
Michel Che and Jacques C. Védrine
Index 1153

jinyx1989已经在催化版块被发过这本书:
http://muchong.com/bbs/viewthread.php?tid=6392123&fpage=1
但是是扫描版,我后来将高清pdf版本发在资源共享区的专业书籍版块:
http://muchong.com/bbs/viewthread.php?tid=6455799&fpage=1
可是浏览的人几乎没有,所以在咨询过原贴版主是否违规后,在本版块重发希望得到更多的响应。请版主核查!

[ Last edited by Actor2006 on 2013-10-20 at 10:23 ]



[ Last edited by liwentao2010 on 2014-10-19 at 14:13 ]

Sample Text

[ Last edited by Actor2006 on 2014-12-10 at 14:31 ]

之前发在专业书籍版,后来发现没有多少人关注,就发到催化版,结果被审查为交流贴,链接也就没有了!要下载,可以到下面链接去下载,不便之处,请见谅!
http://muchong.com/bbs/viewthread.php?tid=6455799


[ Last edited by Actor2006 on 2014-12-10 at 14:33 ]
回复此楼
nanoeverest
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
回帖支持 ( 显示支持度最高的前 50 名 )

mydawn

铁杆木虫 (著名写手)


小木虫: 金币+0.5, 给个红包,谢谢回帖
这书信息量太大了。。。已经达到了字典级别。。
3楼2013-10-20 20:06:25
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

Actor2006

至尊木虫 (知名作家)

引用回帖:
8楼: Originally posted by Z11030154 at 2014-10-18 16:08:52
链接在哪?如何下载

之前发在专业书籍版,后来发现没有多少人关注,就发到催化版,结果被审查为交流贴,链接也就没有了!要下载,可以到下面链接去下载,不便之处,请见谅!
http://muchong.com/bbs/viewthread.php?tid=6455799
nanoeverest
12楼2014-12-10 14:29:47
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
普通回帖

leiws

至尊木虫 (职业作家)

木虫浪子


小木虫: 金币+0.5, 给个红包,谢谢回帖
这个本书有高清的PDF版本...
人的烦恼就是记性太好,如果可以把所有事都忘掉,以后每一日都是个新开始,你说多好。
2楼2013-10-20 11:48:35
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

dzf1988

银虫 (小有名气)

谢谢,受用。
珍惜拥有的,开心生活。
4楼2013-11-18 19:58:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

larry1695

金虫 (小有名气)

太感谢啦。
5楼2013-11-28 11:12:21
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

zhangcencj

金虫 (小有名气)


小木虫: 金币+0.5, 给个红包,谢谢回帖
引用回帖:
2楼: Originally posted by leiws at 2013-10-20 11:48:35
这个本书有高清的PDF版本...

这个链接进不去,请问你有pdf版本的吗?谢谢。
读博是个漫长的旅程!
6楼2014-03-11 00:12:08
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
7楼2014-10-18 10:52:55
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

Z11030154

木虫 (正式写手)


小木虫: 金币+0.5, 给个红包,谢谢回帖
链接在哪?如何下载
想自己该想的,做自己该做的
8楼2014-10-18 16:08:52
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
顶一下,感谢分享

[ 发自小木虫客户端 ]
9楼2014-10-19 12:16:21
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

相識也是緣份

铁杆木虫 (正式写手)


小木虫: 金币+0.5, 给个红包,谢谢回帖
Thanks you share!
Computer&Chemistry
10楼2014-10-20 00:08:40
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 Actor2006 的主题更新
普通表情 高级回复(可上传附件)
信息提示
请填处理意见