| 查看: 639 | 回复: 6 | |||
| 【奖励】 本帖被评价6次,作者pkusiyuan增加金币 4.6 个 | |||
[资源]
First Steps in Differential Geometry Riemannian, Contact, Symplectic
|
|||
|
First Steps in Differential Geometry Riemannian, Contact, Symplectic Contents 1 Basic Objects and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Linear Algebra Essentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Constructing Subspaces I: Spanning Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Linear Independence, Basis, and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Linear Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 Constructing Linear Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.7 Constructing Subspaces II: Subspaces and Linear Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.8 The Dual of a Vector Space, Forms, and Pullbacks . . . . . . . . . . . . . . . . . . 30 2.9 Geometric Structures I: Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.10 Geometric Structures II: Linear Symplectic Forms . . . . . . . . . . . . . . . . . . 44 2.11 For Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Advanced Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1 The Derivative and Linear Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2 The Tangent Space I: A Geometric Definition . . . . . . . . . . . . . . . . . . . . . . . 74 3.3 Geometric Sets and Subspaces of Tp(Rn) . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.4 The Tangent Space II: An Analytic Definition . . . . . . . . . . . . . . . . . . . . . . . 91 3.5 The Derivative as a Linear Map Between Tangent Spaces . . . . . . . . . . 99 3.6 Diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.7 Vector Fields: From Local to Global. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.8 Integral Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.9 Diffeomorphisms Generated by Vector Fields . . . . . . . . . . . . . . . . . . . . . . . 121 3.10 For Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 ix x Contents 4 Differential Forms and Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.1 The Algebra of Alternating Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.2 Operations on Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.3 Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.4 Operations on Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 4.5 Integrating Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 4.6 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 4.7 The Lie Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 4.8 For Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 5 Riemannian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.1 Basic Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.2 Constructing Metrics; Metrics on Geometric Sets . . . . . . . . . . . . . . . . . . . 204 5.3 The Riemannian Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 5.4 Parallelism and Geodesics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 5.5 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 5.6 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 5.7 For Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 5.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 6 Contact Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 6.1 Motivation I: Huygens’ Principle and Contact Elements . . . . . . . . . . . . 272 6.2 Motivation II: Differential Equations and Contact Elements . . . . . . . . 279 6.3 Basic Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 6.4 Contact Diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 6.5 Contact Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 6.6 Darboux’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 6.7 Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 6.8 For Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 6.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 7 Symplectic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 7.1 Motivation: Hamiltonian Mechanics and Phase Space . . . . . . . . . . . . . . 341 7.2 Basic Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 7.3 Symplectic Diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 7.4 Symplectic and Hamiltonian Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 7.5 Geometric Sets in Symplectic Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 7.6 Hypersurfaces of Contact Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 7.7 Symplectic Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 7.8 For Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 7.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : First_Steps_in_Differential_Geometry_Riemannian,_Contact,_Symplectic,_Andrew_McInerney,_2013.pdf
2015-03-23 11:30:53, 3.49 M
» 收录本帖的淘帖专辑推荐
计算数学 |
» 猜你喜欢
职称评审没过,求安慰
已经有49人回复
26申博自荐
已经有3人回复
A期刊撤稿
已经有4人回复
垃圾破二本职称评审标准
已经有17人回复
投稿Elsevier的Neoplasia杂志,到最后选publishing options时页面空白,不能完成投稿
已经有22人回复
EST投稿状态问题
已经有7人回复
毕业后当辅导员了,天天各种学生超烦
已经有4人回复
三无产品还有机会吗
已经有6人回复
hylpy
专家顾问 (知名作家)
-

专家经验: +2500 - 数学EPI: 7
- 应助: 381 (硕士)
- 贵宾: 0.167
- 金币: 51117.4
- 帖子: 5093
- 在线: 1102.4小时
- 虫号: 3247778
2楼2015-03-23 13:14:52
5楼2015-03-26 08:21:52
简单回复
2015-03-23 14:50
回复
五星好评 顶一下,感谢分享!
2015-03-24 08:18
回复
五星好评 顶一下,感谢分享!
2016-06-01 07:00
回复
五星好评 顶一下,感谢分享!
2016-07-25 12:52
回复
五星好评 顶一下,感谢分享!













回复此楼