24小时热门版块排行榜    

查看: 1940  |  回复: 7
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

youlong丹丹

新虫 (小有名气)

[求助] Mathematica求定积分,结果有虚数怎么处理?

Mathematica求积分结果有虚数怎么处理?是错了吗?怎么求解结果才没有虚数!(求大神解释怎么处理)
  程序如下:
   (*定义材料常数*)(*脱层深度为2,长度为0 .2*)
Subscript[\[Nu], TL] = 0.25;
Subscript[EE, L] = 53.8*10^9;(*L方向的弹性模量*)
Subscript[EE, T] = 17.93*10^9;(*T方向的弹性模量*)
Subscript[G, LT] = 8.96*10^9;(*LT方向的剪切模量*)
Subscript[\[Nu], LT] =
  Subscript[\[Nu], TL]*Subscript[EE, L]/Subscript[EE, T];
\[Mu] = 1 - Subscript[\[Nu], LT]*Subscript[\[Nu], TL];
Subscript[C, L] = Subscript[EE, L]/\[Mu];
Subscript[C, S] = Subscript[\[Nu], LT]*Subscript[EE, T]/\[Mu];
Subscript[C, T] = Subscript[EE, T]/\[Mu];
Subscript[C, LT] = Subscript[G, LT];
(*脱层几何参数*)
\[Rho] = 1600;(*脱层密度*)
c = 0.1;(*阻尼*)
t = 0.01;(*t每层厚度*)
h = 0.05;(*h为梁总厚度*)
l = 1;(*为梁总的长度*)
Subscript[l, 1] = 0.35;(*为梁1区的长度*)
Subscript[l, 2] = 0.35;(*为梁2区的长度*)
Subscript[l, 3] = 0.3;(*为梁3区的长度*)
Subscript[l, 4] = 0.3;(*为梁4区的长度*)
nn1 = h/t;(*nn1为总铺层厚度*)
nn2 = 2.0;(*为上子铺层层数*)
nn3 = h/t - nn2;(*下子铺层层数*)
Subscript[h, 3] = t*nn2;(*梁的上部子厚度*)
Subscript[h, 4] = h - Subscript[h, 3];(*梁的下部子厚度*)
Subscript[h, 1] = h;(*梁1区的厚度*)
Subscript[h, 2] = h;(*梁2区的厚度*)
(*求各单层刚度*)
agk = {0 Pi/180, 90 Pi/180, 0 Pi/180, 90 Pi/180,
  0 Pi/180};(*列表各铺层角度*)
ck = Cos[agk];(*列表求各铺层角度余弦*)
sk = Sin[agk];(*列表求各铺层角度正弦*)
s11k = ck^4*Subscript[C, L] + 2 ck^2*sk^2*Subscript[C, S] +
            sk^4*Subscript[C, T] +
  4 ck^2*sk^2*Subscript[C, LT];(*求各区刚度*)
A11 = \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k =
    1\), \(nn1\)]\((s11k[\([\)\(k\)\(]\)]*t)\)\);(*一区拉伸刚度*)
A21 = A11;
A31 = (\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k =
     1\), \(nn2\)]\(\((s11k[\([\)\(k\)\(]\)])\)*t\)\));(*三区拉伸刚度*)
A41 = (\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k =
     nn2 + 1\), \(nn1\)]\(\((s11k[\([\)\(k\)\(]\)])\)*
    t\)\));(*四区拉伸刚度*)
Print["A21=A11;D21=D11"];(*二区拉伸刚度、弯曲刚度*)
D11 = \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k =
    1\), \(nn1\)]\((s11k[\([\)\(k\)\(]\)]*
\*FractionBox[\(t^3\), \(12\)])\)\); D21 = D11;
D31 = \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k =
    1\), \(nn2\)]\((s11k[\([\)\(k\)\(]\)]*
\*FractionBox[\(t^3\), \(12\)])\)\);(*三区弯曲刚度*)
D41 = \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k =
    nn2 + 1\), \(nn1\)]\((s11k[\([\)\(k\)\(]\)]*
\*FractionBox[\(t^3\), \(12\)])\)\);(*四区弯曲刚度*)
AA1 = A11/A11; AA2 = A21/A11; AA3 = A31/A11 ; AA4 = A41/A11;
DD1 = D11/(A11*h^2); DD2 = D21/(A11*h^2); DD3 = D31/(A11*h^2);
DD4 = D41/(A11*h^2);
k1 = Subscript[l, 1]/l; k2 = Subscript[l, 2]/l; k3 = Subscript[l, \
3]/l; k4 = Subscript[l, 4]/l; \[Alpha] = h/l;
a1 = (\[Alpha]*k1)/(DD1*(\[Beta]1)^3); a2 = (\[Alpha]*k2)/(
DD2*(\[Beta]2)^3); a3 = (\[Alpha]*k3)/(
DD3*(\[Beta]3)^3); a4 = (\[Alpha]*k4)/(DD4*(\[Beta]4)^3);
\[Beta]1 = h/Subscript[l, 1]; \[Beta]2 = h/Subscript[l, 2]; \[Beta]3 \
= h/Subscript[l, 3]; \[Beta]4 = h/Subscript[l, 4];
b1 = Subscript[l, 1]/Subscript[l, 3]; b2 = Subscript[l, \
1]/Subscript[l, 4]; b3 = Subscript[l, 2]/Subscript[l, 3]; b4 = \
Subscript[l, 2]/Subscript[l, 4];
cc = c*Sqrt[h/(A11*\[Rho])];
X1 = 1.7375760822920472 Sin[0.613232980275129 \[Zeta]];
X2 = Cos[0.613232980275129 \[Zeta]] -
   1.4209752431880647 Sin[0.613232980275129 \[Zeta]];
X3 = Cos[0.739582115049621 \[Zeta]] +
   0.3876228058028462 Sin[0.739582115049621 \[Zeta]];
X4 = 1.` Cos[0.978384917855542 \[Zeta]] +
   0.5323513041526853 Sin[0.978384917855542 \[Zeta]];
Y1 = -Cos[1.455897532376082 \[Zeta]] +
   Cosh[1.455897532376082 \[Zeta]] +
   1.0674425258825135 Sin[1.455897532376082 \[Zeta]] -
   1.0674425258825135 Sinh[1.455897532376082 \[Zeta]];
Y2 = 0.9457580778422289 Cos[1.455897532376082 \[Zeta]] +
   0.09644654205428609 Cosh[1.455897532376082 \[Zeta]] -
   1.1157845689282317 Sin[1.455897532376082 \[Zeta]] +
   0.38566239321018325 Sinh[1.455897532376082 \[Zeta]];
Y3 = 0.7405529743453507 Cos[1.6070099649525538 \[Zeta]] +
   0.30165164555119 Cosh[1.6070099649525538 \[Zeta]] +
   0.7678686775702793 Sin[1.6070099649525538 \[Zeta]] -
   0.2008974894754521 Sinh[1.6070099649525538 \[Zeta]];
Y4 = 0.8875471019789405 Cos[1.3971945898128537 \[Zeta]] +
   0.15465751791759935 Cosh[1.3971945898128537 \[Zeta]] +
   0.745444912978682 Sin[1.3971945898128537 \[Zeta]] -
   0.09333220387392055 Sinh[1.3971945898128537 \[Zeta]];
aa1 = AA1*\[Beta]1*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
      X1, {\[Zeta], 2}]*X1 \[DifferentialD]\[Zeta]\)\) +
  AA3*\[Beta]3*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
      X3, {\[Zeta], 2}]*X3 \[DifferentialD]\[Zeta]\)\) +
  AA4*\[Beta]4*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
      X4, {\[Zeta], 2}]*X4 \[DifferentialD]\[Zeta]\)\) +
  AA2*\[Beta]2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
      X2, {\[Zeta], 2}]*X2 \[DifferentialD]\[Zeta]\)\)
aa2 = AA1*(\[Beta]1)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[Y1, \[Zeta]]*
     D[Y1, {\[Zeta], 2}]*X1 \[DifferentialD]\[Zeta]\)\) +
  AA3*(\[Beta]3)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[Y3, \[Zeta]]*
     D[Y3, {\[Zeta], 2}]*X3 \[DifferentialD]\[Zeta]\)\) +
  AA4*(\[Beta]4)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[Y4, \[Zeta]]*
     D[Y4, {\[Zeta], 2}]*X4 \[DifferentialD]\[Zeta]\)\) +
  AA2*(\[Beta]2)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[Y2, \[Zeta]]*
     D[Y2, {\[Zeta], 2}]*X2 \[DifferentialD]\[Zeta]\)\)
aa3 = AA1*(\[Beta]1)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
      X1, {\[Zeta], 2}]*D[Y1, \[Zeta]]*
     Y1 \[DifferentialD]\[Zeta]\)\) + AA3*(\[Beta]3)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
      X3, {\[Zeta], 2}]*D[Y3, \[Zeta]]*
     Y3 \[DifferentialD]\[Zeta]\)\) + AA4*(\[Beta]4)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
      X4, {\[Zeta], 2}]*D[Y4, \[Zeta]]*
     Y4 \[DifferentialD]\[Zeta]\)\) + AA2*(\[Beta]2)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
      X2, {\[Zeta], 2}]*D[Y2, \[Zeta]]*Y2 \[DifferentialD]\[Zeta]\)\)
aa4 = AA1*(\[Beta]1)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[X1, \[Zeta]]*
     D[Y1, {\[Zeta], 2}]*Y1 \[DifferentialD]\[Zeta]\)\) +
  AA3*(\[Beta]3)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[X3, \[Zeta]]*
     D[Y3, {\[Zeta], 2}]*Y3 \[DifferentialD]\[Zeta]\)\) +
  AA4*(\[Beta]4)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[X4, \[Zeta]]*
     D[Y4, {\[Zeta], 2}]*Y4 \[DifferentialD]\[Zeta]\)\) +
  AA2*(\[Beta]2)^2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[X2, \[Zeta]]*
     D[Y2, {\[Zeta], 2}]*Y2 \[DifferentialD]\[Zeta]\)\)
aa5 = 3/2 (AA1*(\[Beta]1)^3*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[Y1, \[Zeta]]^2*
       D[Y1, {\[Zeta], 2}]*Y1 \[DifferentialD]\[Zeta]\)\) +
    AA3*(\[Beta]3)^3*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[Y3, \[Zeta]]^2*
       D[Y3, {\[Zeta], 2}]*Y3 \[DifferentialD]\[Zeta]\)\) +
    AA4*(\[Beta]4)^3*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[Y4, \[Zeta]]^2*
       D[Y4, {\[Zeta], 2}]*Y4 \[DifferentialD]\[Zeta]\)\) +
    AA2*(\[Beta]2)^3*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[Y2, \[Zeta]]^2*
       D[Y2, {\[Zeta], 2}]*Y2 \[DifferentialD]\[Zeta]\)\))
aa6 = -(DD1*(\[Beta]1)^3*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
        Y1, {\[Zeta], 4}]*Y1 \[DifferentialD]\[Zeta]\)\) +
    DD3*(\[Beta]3)^3*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
        Y3, {\[Zeta], 4}]*Y3 \[DifferentialD]\[Zeta]\)\) +
    DD4*(\[Beta]4)^3*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
        Y4, {\[Zeta], 4}]*Y4 \[DifferentialD]\[Zeta]\)\) +
    DD2*(\[Beta]2)^3*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
        Y2, {\[Zeta], 4}]*Y2 \[DifferentialD]\[Zeta]\)\))
aa7 = -((\[Alpha]^2*\[Beta]1)/12*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
        Y1, {\[Zeta], 2}]*
       Y1 \[DifferentialD]\[Zeta]\)\) + (\[Alpha]^2*\[Beta]3)/12*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
        Y3, {\[Zeta], 2}]*
       Y3 \[DifferentialD]\[Zeta]\)\) + (\[Alpha]^2*\[Beta]4)/12*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
        Y4, {\[Zeta], 2}]*
       Y4 \[DifferentialD]\[Zeta]\)\) + (\[Alpha]^2*\[Beta]2)/12*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(D[
        Y2, {\[Zeta], 2}]*Y2 \[DifferentialD]\[Zeta]\)\))
aa8 = \[Alpha]*k1*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(Y1^2 \
\[DifferentialD]\[Zeta]\)\) + \[Alpha]*k3*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(Y3^2 \
\[DifferentialD]\[Zeta]\)\) + \[Alpha]*k4*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(Y4^2 \
\[DifferentialD]\[Zeta]\)\) + \[Alpha]*k2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(Y2^2 \
\[DifferentialD]\[Zeta]\)\)
aa9 = -(\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(Y1 \
\[DifferentialD]\[Zeta]\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(Y3 \
\[DifferentialD]\[Zeta]\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(Y2 \
\[DifferentialD]\[Zeta]\)\))
aa10 = cc*k1*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(Y1^2 \
\[DifferentialD]\[Zeta]\)\) + cc*k3*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(Y3^2 \
\[DifferentialD]\[Zeta]\)\) + cc*k4*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(Y4^2 \
\[DifferentialD]\[Zeta]\)\) + cc*k2*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(1\)]\(Y2^2 \
\[DifferentialD]\[Zeta]\)\)
bb1 = aa8 + aa7
bb2 = aa10
bb3 = -aa6
bb4 = -(aa5 - (aa3 + aa4)*aa2/aa1)
bb5 = -aa9
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

youlong丹丹

新虫 (小有名气)

送红花一朵
引用回帖:
6楼: Originally posted by walk1997 at 2014-09-27 10:36:36
建议还是自己改下
说实话 蛮多的 而且你这个不是思路的问题 是书写的问题...

好的,谢谢
7楼2014-09-28 22:05:31
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 8 个回答

walk1997

金虫 (著名写手)

程序copy过去 有错误呀 运行不了
另外  太多的积分,求和符号了....
也许直接用命令名字调试起来会更方便

中继那些数字那么长,是手输入的?还说copy的 奇怪
2楼2014-09-26 07:48:31
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

walk1997

金虫 (著名写手)

引用回帖:
2楼: Originally posted by walk1997 at 2014-09-26 07:48:31
程序copy过去 有错误呀 运行不了
另外  太多的积分,求和符号了....
也许直接用命令名字调试起来会更方便

中继那些数字那么长,是手输入的?还说copy的 奇怪

发现少copy点东西 copy完全能运行出结果
感觉是书写的问题 给的结果怪怪
建议有些变量的定义采用比较常规的命名方法
把积分 求和之类的符号改成函数名来运算
3楼2014-09-26 07:52:06
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

youlong丹丹

新虫 (小有名气)

引用回帖:
2楼: Originally posted by walk1997 at 2014-09-26 07:48:31
程序copy过去 有错误呀 运行不了
另外  太多的积分,求和符号了....
也许直接用命令名字调试起来会更方便

中继那些数字那么长,是手输入的?还说copy的 奇怪

我复制后可以运行,
  我把程序以附件的形式传给你,麻烦你帮我看下,谢谢

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : 程序.nb
  • 2014-09-26 09:59:20, 37.92 K
4楼2014-09-26 10:02:02
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见